6 research outputs found

    Detecting gene-environment interactions in genome-wide association data

    Get PDF
    Despite the importance of gene-environment (G×E) interactions in the etiology of common diseases, little work has been done to develop methods for detecting these types of interactions in genome-wide association study data. This was the focus of Genetic Analysis Workshop 16 Group 10 contributions, which introduced a variety of new methods for the detection of G×E interactions in both case-control and family-based data using both cross-sectional and longitudinal study designs. Many of these contributions detected significant G×E interactions. Although these interactions have not yet been confirmed, the results suggest the importance of testing for interactions. Issues of sample size, quantifying the environmental exposure, longitudinal data analysis, family-based analysis, selection of the most powerful analysis method, population stratification, and computational expense with respect to testing G×E interactions are discussed

    Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk

    Full text link
    Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene-environment (G x E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G x E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case-control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E-4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E-4), and Aspartylglucosaminidase (AGA: p = 4.5E-4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein

    Hormone metabolism pathway genes and mammographic density change after quitting estrogen and progestin combined hormone therapy in the California Teachers Study

    Get PDF
    Introduction Mammographic density (MD) is a strong biomarker of breast cancer risk. MD increases after women start estrogen plus progestin therapy (EPT) and decreases after women quit EPT. A large interindividual variation in EPT-associated MD change has been observed, but few studies have investigated genetic predictors of the EPT-associated MD change. Here, we evaluate the association between polymorphisms in hormone metabolism pathway genes and MD changes when women quit EPT. Methods We collected mammograms before and after women quit EPT and genotyped 405 tagging single nucleotide polymorphisms (SNPs) in 30 hormone metabolism pathway genes in 284 non-Hispanic white participants of the California Teachers Study (CTS). Participants were ages 49 to 71 years at time of mammography taken after quitting EPT. We assessed percent MD using a computer-assisted method. MD change was calculated by subtracting MD of an ‘off-EPT’ mammogram from MD of an ‘on-EPT’ (that is baseline) mammogram. Linear regression analysis was used to investigate the SNP-MD change association, adjusting for the baseline ‘on-EPT’ MD, age and BMI at time of baseline mammogram, and time interval and BMI change between the two mammograms. An overall pathway and gene-level summary was obtained using the adaptive rank truncated product (ARTP) test. We calculated ‘P values adjusted for correlated tests (P ACT)’ to account for multiple testing within a gene. Results The strongest associations were observed for rs7489119 in SLCO1B1, and rs5933863 in ARSC. SLCO1B1 and ARSC are involved in excretion and activation of estrogen metabolites of EPT, respectively. MD change after quitting was 4.2% smaller per minor allele of rs7489119 (P = 0.0008; P ACT = 0.018) and 1.9% larger per minor allele of rs5933863 (P = 0.013; P ACT = 0.025). These individual SNP associations did not reach statistical significance when we further used Bonferroni correction to consider the number of tested genes. The pathway level summary ARTP P value was not statistically significant. Conclusions Data from this longitudinal study of EPT quitters suggest that genetic variation in two hormone metabolism pathway genes, SLCO1B1 and ARSC, may be associated with change in MD after women stop using EPT. Larger longitudinal studies are needed to confirm our findings

    Probing the diabetes and colorectal cancer relationship using gene – environment interaction analyses

    No full text
    Background: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. Methods: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). Results: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 – ORAA: 1.62, 95% CI: 1.34–1.96; ORAG: 1.41, 95% CI: 1.30–1.54; ORGG: 1.22, 95% CI: 1.13–1.31; p-value3-d.f.: 5.46 × 10−11) and 13q14.13 (rs9526201, LRCH1 – ORGG: 2.11, 95% CI: 1.56–2.83; ORGA: 1.52, 95% CI: 1.38–1.68; ORAA: 1.13, 95% CI: 1.06–1.21; p-value2-d.f.: 7.84 × 10−09). Discussion: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship
    corecore