52 research outputs found

    Presenilin-Dependent Receptor Processing Is Required for Axon Guidance

    Get PDF
    SummaryThe Alzheimer's disease-linked gene presenilin is required for intramembrane proteolysis of amyloid-β precursor protein, contributing to the pathogenesis of neurodegeneration that is characterized by loss of neuronal connections, but the role of Presenilin in establishing neuronal connections is less clear. Through a forward genetic screen in mice for recessive genes affecting motor neurons, we identified the Columbus allele, which disrupts motor axon projections from the spinal cord. We mapped this mutation to the Presenilin-1 gene. Motor neurons and commissural interneurons in Columbus mutants lacking Presenilin-1 acquire an inappropriate attraction to Netrin produced by the floor plate because of an accumulation of DCC receptor fragments within the membrane that are insensitive to Slit/Robo silencing. Our findings reveal that Presenilin-dependent DCC receptor processing coordinates the interplay between Netrin/DCC and Slit/Robo signaling. Thus, Presenilin is a key neural circuit builder that gates the spatiotemporal pattern of guidance signaling, thereby ensuring neural projections occur with high fidelity

    Cholinergic Input Is Required during Embryonic Development to Mediate Proper Assembly of Spinal Locomotor Circuits

    Get PDF
    SummaryRhythmic limb movements are controlled by pattern-generating neurons within the ventral spinal cord, but little is known about how these locomotor circuits are assembled during development. At early stages of embryogenesis, motor neurons are spontaneously active, releasing acetylcholine that triggers the depolarization of adjacent cells in the spinal cord. To investigate whether acetylcholine-driven activity is required for assembly of the central pattern-generating (CPG) circuit, we studied mice lacking the choline acetyltransferase (ChAT) enzyme. Our studies show that a rhythmically active spinal circuit forms in ChAT mutants, but the duration of each cycle period is elongated, and right-left and flexor-extensor coordination are abnormal. In contrast, blocking acetylcholine receptors after the locomotor network is wired does not affect right-left or flexor-extensor coordination. These findings suggest that the cholinergic neurotransmitter pathway is involved in configuring the CPG during a transient period of development

    Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region

    Get PDF
    Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease‐associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full‐length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α‐secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α‐secretase‐mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho‐SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid β‐peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all oluble TREM2 was 4D9‐bound. Moreover, in a mouse model for Alzheimer's disease‐related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease‐associated state

    A Whole Cell Assay to Measure Caspase-6 Activity by Detecting Cleavage of Lamin A/C

    Get PDF
    Caspase-6 is a cysteinyl protease implicated in neurodegenerative conditions including Alzheimer's and Huntington's disease making it an attractive target for therapeutic intervention. A greater understanding of the role of caspase-6 in disease has been hampered by a lack of suitable cellular assays capable of specifically detecting caspase-6 activity in an intact cell environment. This is mainly due to the use of commercially available peptide substrates and inhibitors which lack the required specificity to facilitate development of this type of assay. We report here a 384-well whole-cell chemiluminescent ELISA assay that monitors the proteolytic degradation of endogenously expressed lamin A/C during the early stages of caspase-dependent apoptosis. The specificity of lamin A/C proteolysis by caspase-6 was demonstrated against recombinant caspase family members and further confirmed in genetic deletion studies. In the assay, plasma membrane integrity remained intact as assessed by release of lactate dehydrogenase from the intracellular environment and the exclusion of cell impermeable peptide inhibitors, despite the induction of an apoptotic state. The method described here is a robust tool to support drug discovery efforts targeting caspase-6 and is the first reported to specifically monitor endogenous caspase-6 activity in a cellular context

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The App DISCUSSION: Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models

    Get PDF
    van Lengerich et al. developed a human TREM2 antibody with a transport vehicle (ATV) that improves brain exposure and biodistribution in mouse models. ATV:TREM2 promotes microglial energetic capacity and metabolism via mitochondrial pathways. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD

    C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice

    No full text
    Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice
    corecore