5,089 research outputs found
Med news
The Med News was a newsletter published from 1960-1962 by the Student American Medical Association (SAMA) at Boston University School of Medicine
Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes.
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9
Asynchronous Variational Integrators
We describe a new class of asynchronous variational integrators (AVI) for nonlinear
elastodynamics. The AVIs are distinguished by the following attributes: (i)
The algorithms permit the selection of independent time steps in each element, and
the local time steps need not bear an integral relation to each other; (ii) the algorithms
derive from a spacetime form of a discrete version of Hamilton’s variational
principle. As a consequence of this variational structure, the algorithms conserve
local momenta and a local discrete multisymplectic structure exactly.
To guide the development of the discretizations, a spacetime multisymplectic
formulation of elastodynamics is presented. The variational principle used incorporates
both configuration and spacetime reference variations. This allows a unified
treatment of all the conservation properties of the system.A discrete version of reference
configuration is also considered, providing a natural definition of a discrete
energy. The possibilities for discrete energy conservation are evaluated.
Numerical tests reveal that, even when local energy balance is not enforced
exactly, the global and local energy behavior of the AVIs is quite remarkable, a
property which can probably be traced to the symplectic nature of the algorith
An automated system for global atmospheric sampling using B-747 airliners
The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described
An Overview of Variational Integrators
The purpose of this paper is to survey some recent advances in variational
integrators for both finite dimensional mechanical systems as well as continuum
mechanics. These advances include the general development of discrete
mechanics, applications to dissipative systems, collisions, spacetime integration algorithms,
AVI’s (Asynchronous Variational Integrators), as well as reduction for
discrete mechanical systems. To keep the article within the set limits, we will only
treat each topic briefly and will not attempt to develop any particular topic in
any depth. We hope, nonetheless, that this paper serves as a useful guide to the
literature as well as to future directions and open problems in the subject
Perioperative Antibiotic Prophylaxis of Wound and Foreign Body Infections: Microbial Factors Affecting Efficacy
Numerous microbial factors are responsible for perioperative infections and influence the efficacy of antibiotic prophylaxis. These factors include the staphylococcal carrier state, bacterial adherence to a number of host proteins, the production of glycocalyx by sessile bacteria, and shifts in antibiotic resistance. A full understanding of the mechanisms involved will lead to further reductions in the number of postoperative infections. Unfortunately, the microbial factors affecting prophylaxis cannot be evaluated separately under clinical conditions; they are easier to study under circumstances whose bacteriologic features are well defined and in which the presence of foreign materials (e.g., sutures) greatly potentiates pathogenic mechanisms. Such circumstances exist, for example, in infections developing after "clean” surgery and in experimental models. Since even clean wounds are found to be contaminated when sampled carefully, the control of infection is more a quantitative than a qualitative problem. The critical period for the development of infection is short: an antibiotic course not exceeding 24 hours seems effective in preventing infectio
Hydrogen Compounds of Group-IV Nanosheets
The structural and electronic properties of the hydrides of silicene and
germanene have been studied using ab initio calculations. The trend for the M-H
(M=C, Si, Ge) bond lengths, and corresponding bond energies, is consistent with
the atomic size trend, and comparable to those of MH_4 hydrides. Band
structures were also obtained for the buckled configuration, which is the
stable form for both silicene and germanene. Upon hydrogenation, both silicane
(indirect gap) and germanane (direct gap) are semiconducting.Comment: 9 pages, 7 figure
Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors
Band bending is a central concept in solid-state physics that arises from
local variations in charge distribution especially near semiconductor
interfaces and surfaces. Its precision measurement is vital in a variety of
contexts from the optimisation of field effect transistors to the engineering
of qubit devices with enhanced stability and coherence. Existing methods are
surface sensitive and are unable to probe band bending at depth from surface or
bulk charges related to crystal defects. Here we propose an in-situ method for
probing band bending in a semiconductor device by imaging an array of
atomic-sized quantum sensing defects to report on the local electric field. We
implement the concept using the nitrogen-vacancy centre in diamond, and map the
electric field at different depths under various surface terminations. We then
fabricate a two-terminal device based on the conductive two-dimensional hole
gas formed at a hydrogen-terminated diamond surface, and observe an unexpected
spatial modulation of the electric field attributed to a complex interplay
between charge injection and photo-ionisation effects. Our method opens the way
to three-dimensional mapping of band bending in diamond and other
semiconductors hosting suitable quantum sensors, combined with simultaneous
imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics.
The final authenticated version is available online at
https://dx.doi.org/10.1038/s41928-018-0130-
Preheating and Affleck-Dine leptogenesis after thermal inflation
Previously, we proposed a model of low energy Affleck-Dine leptogenesis in
the context of thermal inflation. The lepton asymmetry is generated at the end
of thermal inflation, which occurs at a relatively low energy scale with the
Hubble parameter somewhere in the range 1 \keV \lesssim H \lesssim 1 \MeV.
Thus Hubble damping will be ineffective in bringing the Affleck-Dine field into
the lepton conserving region near the origin, leaving the possibility that the
lepton number could be washed out. Previously, we suggested that preheating
could damp the amplitude of the Affleck-Dine field allowing conservation of the
lepton number. In this paper, we demonstrate numerically that preheating does
efficiently damp the amplitude of the Affleck-Dine field and that the lepton
number is conserved as the result. In addition to demonstrating a crucial
aspect of our model, it also opens the more general possibility of low energy
Affleck-Dine baryogenesis.Comment: 38 pages, 17 figure
From START to FINISH : the influence of osmotic stress on the cell cycle
Peer reviewedPublisher PD
- …
