545 research outputs found
Compressibility and Electronic Structure of MgB2 up to 8 GPa
The lattice parameters of MgB2 up to pressures of 8 GPa were determined using
high-resolution x-ray powder diffraction in a diamond anvil cell. The bulk
modulus, B0, was determined to be 151 +-5 GPa. Both experimental and
first-principles calculations indicate nearly isotropic mechanical behavior
under pressure. This small anisotropy is in contrast to the 2 dimensional
nature of the boron pi states. The pressure dependence of the density of states
at the Fermi level and a reasonable value for the average phonon frequency
account within the context of BCS theory for the reduction of Tc under
pressure.Comment: REVTeX file. 4 pages, 4 figure
Runaway Events Dominate the Heavy Tail of Citation Distributions
Statistical distributions with heavy tails are ubiquitous in natural and
social phenomena. Since the entries in heavy tail have disproportional
significance, the knowledge of its exact shape is very important. Citations of
scientific papers form one of the best-known heavy tail distributions. Even in
this case there is a considerable debate whether citation distribution follows
the log-normal or power-law fit. The goal of our study is to solve this debate
by measuring citation distribution for a very large and homogeneous data. We
measured citation distribution for 418,438 Physics papers published in
1980-1989 and cited by 2008. While the log-normal fit deviates too strong from
the data, the discrete power-law function with the exponent does
better and fits 99.955% of the data. However, the extreme tail of the
distribution deviates upward even from the power-law fit and exhibits a
dramatic "runaway" behavior. The onset of the runaway regime is revealed
macroscopically as the paper garners 1000-1500 citations, however the
microscopic measurements of autocorrelation in citation rates are able to
predict this behavior in advance.Comment: 6 pages, 5 Figure
Trialogue on the number of fundamental constants
This paper consists of three separate articles on the number of fundamental
dimensionful constants in physics. We started our debate in summer 1992 on the
terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the
subject to find that our views still diverged and decided to explain our
current positions. LBO develops the traditional approach with three constants,
GV argues in favor of at most two (within superstring theory), while MJD
advocates zero.Comment: Version appearing in JHEP; 31 pages late
Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes
The stability analysis of a generalized Dicke model, in the semi-classical
limit, describing the interaction of a two-species Bose-Einstein condensate
driven by a quantized field in the presence of Kerr and spontaneous parametric
processes is presented. The transitions from Rabi to Josephson dynamics are
identified depending on the relative value of the involved parameters.
Symmetry-breaking dynamics are shown for both types of coherent oscillations
due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in
"Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in
Nonlinear Systems
Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation
A recently developed theory for eliminating decoherence and design
constraints in quantum computers, ``encoded recoupling and decoupling'', is
shown to be fully compatible with a promising proposal for an architecture
enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature
417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates
are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions
at a time. The encoding offers continuous protection against collective
dephasing. Decoupling pulses, that are also implemented using the SM scheme
directly to the encoded qubits, are capable of further reducing various other
sources of qubit decoherence, such as due to differential dephasing and due to
decohered vibrational modes. The feasibility of using the relatively slow SM
pulses in a decoupling scheme quenching the latter source of decoherence
follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure
Search for heavy neutrinos mixing with tau neutrinos
We report on a search for heavy neutrinos (\nus) produced in the decay
D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in
the NOMAD detector. Both decays are expected to occur if \nus is a component
of .\
From the analysis of the data collected during the 1996-1998 runs with
protons on target, a single candidate event consistent with
background expectations was found. This allows to derive an upper limit on the
mixing strength between the heavy neutrino and the tau neutrino in the \nus
mass range from 10 to 190 . Windows between the SN1987a and Big Bang
Nucleosynthesis lower limits and our result are still open for future
experimental searches. The results obtained are used to constrain an
interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays
Results from the nu_tau appearance search in a neutrino beam using the full
NOMAD data sample are reported. A new analysis unifies all the hadronic tau
decays, significantly improving the overall sensitivity of the experiment to
oscillations. The "blind analysis" of all topologies yields no evidence for an
oscillation signal. In the two-family oscillation scenario, this sets a 90%
C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes
sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at
sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation
hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta
m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective
couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
- …