3,058 research outputs found
Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers
The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase
Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions
Beta-glucan reflects liver injury after preservation and transplantation in dogs.
Graft failure and extrahepatic organ complications, which frequently develop after transplantation, may be related to inflammatory mediators stimulated by endotoxin (ET). The role of endotoxemia after liver transplantation is controversial and may depend upon differences in the ET assay method used in the various contradicting studies. While the standard Limulus amebocyte lysate (LAL) is reactive for ET and beta-glucan, a novel turbidimetric assay method enables separate determinations of ET and beta-glucan. Beagle dogs undergoing orthotopic liver transplantation were divided into two groups. In Group I (n = 6) the grafts were transplanted immediately and in Group II (n = 6) grafts were preserved for 48 h in University of Wisconsin (UW) solution. Animals received cyclosporine immunosuppression and were followed for 14 days. Daily measurements of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were performed. Samples for ET and beta-glucan measurement were collected serially and processed using the turbidimetric assay method. While no graft failure was seen in Group I, three of six Group II animals died from graft failure within 1 day after transplantation. Preservation and reperfusion injury was much more severe in the Group II grafts than in Group I grafts. While endotoxemia could not be detected, postoperative beta-glucan levels (undetectable pretransplant) were seen in both groups. Beta-glucan levels were much higher in Group II grafts than in Group I grafts, and correlated with the severity of liver damage. In conclusion, this study shows that beta-glucan, instead of ET, appears during the early posttransplant period. We believe that posttransplant elevation of beta-glucan is related to liver damage, especially endothelial damage by preservation and reperfusion
Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance
Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of
noise to a noisy system induces coherent amplification of its response. First
suggested as a mechanism for the cyclic recurrence of ice ages, stochastic
resonance has been seen in a wide variety of macroscopic physical systems:
bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and
neurophysiological systems such as the receptors in crickets[7] and
crayfish[8]. Although it is fundamentally important as a mechanism of coherent
signal amplification, stochastic resonance is yet to be observed in nanoscale
systems. Here we report the observation of stochastic resonance in bistable
nanomechanical silicon oscillators, which can play an important role in the
realization of controllable high-speed nanomechanical memory cells. Our
nanomechanical systems were excited into a dynamic bistable state and modulated
in order to induce controllable switching; the addition of white noise showed a
marked amplification of the signal strength. Stochastic resonance in
nanomechanical systems paves the way for exploring macroscopic quantum
coherence and tunneling, and controlling nanoscale quantum systems for their
eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure
Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998
Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods.
Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides
Aspects of holography for theories with hyperscaling violation
We analyze various aspects of the recently proposed holographic theories with
general dynamical critical exponent z and hyperscaling violation exponent
. We first find the basic constraints on from the gravity
side, and compute the stress-energy tensor expectation values and scalar
two-point functions. Massive correlators exhibit a nontrivial exponential
behavior at long distances, controlled by . At short distance, the
two-point functions become power-law, with a universal form for .
Next, the calculation of the holographic entanglement entropy reveals the
existence of novel phases which violate the area law. The entropy in these
phases has a behavior that interpolates between that of a Fermi surface and
that exhibited by systems with extensive entanglement entropy. Finally, we
describe microscopic embeddings of some metrics into full
string theory models -- these metrics characterize large regions of the
parameter space of Dp-brane metrics for . For instance, the theory of
N D2-branes in IIA supergravity has z=1 and over a wide range
of scales, at large .Comment: 35 pages; v2: new references added; v3: proper reference [14] added;
v4: minor clarification
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors
An experimental study of the production of up-going charged particles in
inelastic interactions of down-going underground muons is reported, using data
obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of
12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243
events are observed having an up-going particle associated with a down-going
muon. These events are analysed to determine the range and emission angle
distributions of the up-going particle, corrected for detection and
reconstruction efficiency. Measurements of the muon neutrino flux by
underground detectors are often based on the observation of through-going and
stopping muons produced in interactions in the rock below the
detector. Up-going particles produced by an undetected down-going muon are a
potential background source in these measurements. The implications of this
background for neutrino studies using MACRO are discussed.Comment: 18 pages, 9 figures. Accepted by Astrop. Physic
- …
