17 research outputs found

    The Rosetteless gene controls development in the choanoflagellate S. rosetta.

    Get PDF
    The origin of animal multicellularity may be reconstructed by comparing animals with one of their closest living relatives, the choanoflagellate Salpingoeca rosetta. Just as animals develop from a single cell-the zygote-multicellular rosettes of S. rosetta develop from a founding cell. To investigate rosette development, we established forward genetics in S. rosetta. We find that the rosette defect of one mutant, named Rosetteless, maps to a predicted C-type lectin, a class of signaling and adhesion genes required for the development and innate immunity in animals. Rosetteless protein is essential for rosette development and forms an extracellular layer that coats and connects the basal poles of each cell in rosettes. This study provides the first link between genotype and phenotype in choanoflagellates and raises the possibility that a protein with C-type lectin-like domains regulated development in the last common ancestor of choanoflagellates and animals

    Short-chain carboxylic acids from gray catbird (Dumetella carolinensis) uropygial secretions vary with testosterone levels and photoperiod

    Get PDF
    The uropygial gland of birds produces secretions that are important in maintaining the health and structural integrity of feathers. Non-volatile components of uropygial secretions are believed to serve a number of functions including waterproofing and conditioning the feathers. Volatile components have been characterized in fewer species, but are particularly interesting because of their potential importance in olfactory interactions within and across species. We used solid-phase microextraction headspace sampling with gas chromatography-mass spectrometry to detect and identify volatiles in uropygial secretions of gray catbirds (Dumetella carolinensis), a North American migratory bird. We consistently detected the following carboxylic acids: acetic, propanoic, 2-methylpropanoic, butanoic, and 3-methylbutanoic. We tested for the effect of lengthened photoperiod and/or exogenous testosterone on volatile signal strength and found a negative effect of lengthened photoperiod on the signal strength of propanoic, 2-methylpropanoic, and butanoic acids, suggesting a trade-off between their production and heightened night-time activity associated with lengthened photoperiod. Signal strength of propanoic and 2-methylpropanoic acids was lower in birds treated with exogenous testosterone than in birds treated with placebos. Sex did not affect signal strength of any of the volatile compounds

    Exploring the Genetic Basis of Variation in Gene Predictions with a Synthetic Association Study

    Get PDF
    Identifying DNA polymorphisms that affect molecular processes like transcription, splicing, or translation typically requires genotyping and experimentally characterizing tissue from large numbers of individuals, which remains expensive and time consuming. Here we introduce an alternative strategy: a “synthetic association study” in which we computationally predict molecular phenotypes on artificial genomes containing randomly sampled combinations of polymorphic alleles, and perform a classical association study to identify genotypes underlying variation in these computationally predicted annotations. We applied this method to characterize the effects on gene structure of 32,792 single-nucleotide polymorphisms between two strains of the antibiotic producing fungus Penicilium chrysogenum. Although these SNPs represent only 0.1 percent of the nucleotides in the genome, they collectively altered 1.8 percent of predicted gene models between these strains. To determine which SNPs or combinations of SNPs were responsible for this variation, we predicted protein-coding genes in 500 intermediate genomes, each identical except for randomly chosen alleles at each SNP position. Of 30,468 gene models in the genome, 557 varied across these 500 genomes. 226 of these polymorphic gene models (40%) were perfectly correlated with individual SNPs, all of which were within or immediately proximal to the affected gene. The genetic architectures of the other 321 were more complex, with several examples of SNP epistasis that would have been difficult to predict a priori. We expect that many of the SNPs that affect computational gene structure reflect a biologically unrealistic sensitivity of the gene prediction algorithm to sequence changes, and we propose that genome annotation algorithms could be improved by minimizing their sensitivity to natural polymorphisms. However, many of the SNPs we identified are likely to affect transcript structure in vivo, and the synthetic association study approach can be easily generalized to any computed genome annotation to uncover relationships between genotype and important molecular phenotypes

    Short-chain carboxylic acids from gray catbird (Dumetella carolinensis) uropygial secretions vary with testosterone levels and photoperiod

    Get PDF
    The uropygial gland of birds produces secretions that are important in maintaining the health and structural integrity of feathers. Non-volatile components of uropygial secretions are believed to serve a number of functions including waterproofing and conditioning the feathers. Volatile components have been characterized in fewer species, but are particularly interesting because of their potential importance in olfactory interactions within and across species. We used solid-phase microextraction headspace sampling with gas chromatography-mass spectrometry to detect and identify volatiles in uropygial secretions of gray catbirds (Dumetella carolinensis), a North American migratory bird. We consistently detected the following carboxylic acids: acetic, propanoic, 2-methylpropanoic, butanoic, and 3-methylbutanoic. We tested for the effect of lengthened photoperiod and/or exogenous testosterone on volatile signal strength and found a negative effect of lengthened photoperiod on the signal strength of propanoic, 2-methylpropanoic, and butanoic acids, suggesting a trade-off between their production and heightened night-time activity associated with lengthened photoperiod. Signal strength of propanoic and 2-methylpropanoic acids was lower in birds treated with exogenous testosterone than in birds treated with placebos. Sex did not affect signal strength of any of the volatile compounds

    Data from: The impacts of Wolbachia and the microbiome on mate choice in Drosophila melanogaster

    No full text
    Symbionts and parasites can manipulate their hosts’ reproduction to their own benefit, profoundly influencing patterns of mate choice and evolution of the host population. Wolbachia is one of the most widespread symbionts among arthropods, and one that alters its hosts’ reproduction in diverse and dramatic ways. While we are beginning to appreciate how Wolbachia's extreme manipulations of host reproduction can influence species diversification and reproductive isolation, we understand little about how symbionts and Wolbachia, in particular, may affect intrapopulation processes of mate choice. We hypothesized that the maternally transmitted Wolbachia would increase the attractiveness of its female hosts to further its own spread. We therefore tested the effects of Wolbachia removal and microbiome disruption on female attractiveness and male mate choice among ten isofemale lines of Drosophila melanogaster. We found variable effects of general microbiome disruption on female attractiveness, with indications that bacteria interact with hosts in a line-specific manner to affect female attractiveness. However, we found no evidence that Wolbachia influence female attractiveness or male mate choice among these lines. Although the endosymbiont Wolbachia can greatly alter the reproduction of their hosts in many species, there is no indication that they alter mate choice behaviours in D. melanogaster

    Naturally occurring SNPs cause fewer gene model differences than randomly placed SNPs.

    No full text
    <p>A) Gene model differences between vdB and vdB*, where all base pair changes were made at naturally occurring SNP positions between UCB and vdB. B) Average gene model differences between vdB and 100 genomes in which SNPs were randomly relocated. Area in circle is proportional to the number of changes observed.</p

    Most events are significantly correlated with one or more SNPs.

    No full text
    <p>A) Histogram of the correlation between every pair-wise event-SNP combination. A correlation of 1.0 (diamond marker) indicates perfect agreement between the SNP genotype and event phenotype in all intermediate genomes. The black line shows a theoretical binomial distribution of correlations between independent events and SNPs. B) Histogram showing the largest SNP-event correlation for each event. C) The event phenotype frequency, the fraction of intermediate genomes containing the less common phenotype of each event, binned as in B. For all graphs, the significance cutoff is shown by the red line.</p

    Locations of SNPs that perfectly associate with gene models.

    No full text
    <p>Note that as each event can belong to one or more category (Intron gain/loss, Exon gain/loss, and/or Shift), the Total is not necessarily equal to the sum of the three categories.</p
    corecore