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Abstract—The uropygial gland of birds produces secretions that are important in maintaining 

the health and structural integrity of feathers. Non-volatile components of uropygial secretions 

are believed to serve a number of functions including waterproofing and conditioning the 

feathers. Volatile components have been characterized in fewer species, but are particularly 

interesting because of their potential importance in olfactory interactions within and across 

species. We used solid-phase microextraction headspace sampling with gas chromatography-

mass spectrometry to detect and identify volatiles in uropygial secretions of gray catbirds 

(Dumetella carolinensis), a North American migratory bird. We consistently detected the 

following carboxylic acids: acetic, propanoic, 2-methylpropanoic, butanoic, and 3-

methylbutanoic. We tested for the effect of lengthened photoperiod and/or exogenous 

testosterone on volatile signal strength and found a negative effect of lengthened photoperiod on 

the signal strength of propanoic, 2-methylpropanoic, and butanoic acids, suggesting a trade-off 

between their production and heightened night-time activity associated with lengthened 

photoperiod. Signal strength of propanoic and 2-methylpropanoic acids was lower in birds 

treated with exogenous testosterone than in birds treated with placebos. Sex did not affect signal 

strength of any of the volatile compounds. 

 

 

Key Words— carboxylic acids, Dumetella carolinensis, gas chromatography-mass 

spectrometry, gray catbird, solid-phase microextraction, static headspace sampling, uropygial 

gland, volatile organic compounds. 

 

 

1. Introduction 

 

Although researchers traditionally have assumed that chemically-mediated interactions in birds 

are negligible, recent studies have shown their importance within and among bird species (see 

reviews by Hagelin and Jones, 2007; Rajchard, 2007; Balthazart and Taziaux, 2009). In a variety 

of avian species, scent has been hypothesized to function in courtship and mate selection 

(Hagelin et al., 2003; Hagelin, 2007), defense against ectoparasites (Douglas et al., 2001) and 

mosquitoes (Douglas et al., 2005), defense against predators (Burger et al., 2004; Reneerkens et 

al., 2005), nest and partner location (Bonadonna and Nevitt, 2004), parenting behaviors 

(Whittaker et al., 2009), and individual recognition (Bonadonna et al., 2007). 

 

In many bird species, odorants originate in the uropygial or preen gland (Jacobs and Ziswiler, 

1982). Located at the base of the tail, this exocrine gland produces waxy secretions that are 

applied to the feathers during preening. The nonvolatile secretions have long been thought to 

condition and waterproof feathers (but see Jacobs and Ziswiler‘s 1982 review), as well as 

regulate microbes (Shawkey et al., 2003; Reneerkens et al., 2008) and ectoparasites (Jacobs and 

Ziswiler, 1982).   

 

Uropygial gland secretions vary qualitatively and quantitatively across avian species (Haribal et 

al., 2005; Haribal et al., 2009) and through time within species (Haribal et al., 2005; Reneerkens 

et al., 2008).  If secretion components are acquired passively through food, interspecies variation 

may simply result from variation in diet (Sandilands et al., 2004).  Alternatively, they may be the 

product of selective pressures such as those exerted by arthropod or microbial ectosymbionts and 



other ephemeral environmental factors that adversely affect feathers. Moreover, because 

secretions enhance feather condition—which is important in mate choice—sexual selection may 

also result in variation in secretions between sexes (Piersma et al., 1999).   

 

Uropygial secretions also vary with season. Soini et al. (2007) found variation in some volatile 

components of uropygial secretions between dark-eyed juncos (Junco hyemalis) maintained in 

captivity under breeding and nonbreeding photoperiods.  They suggested that increased 

production of linear alcohols might reflect seasonal changes in the need for microbial and 

predator defenses. They also found increased variation of volatiles between sexes and among 

individuals during the breeding season. Subsequent work by Whitaker et al. (2009) on juncos 

during the breeding season reveals a possible role of volatiles in parental care as well.  Soini et 

al. speculated that linear alcohols detected in the junco may be a by-product of lipid biosynthesis, 

and in turn be used by conspecifics as signals of reproductive condition.  Martín-Vivaldi et al. 

(2009) found strong seasonal variation in the uropygial secretions of European hoopoes (Upupa 

epops); in subsequent work (2010), they discovered that secretions from nestlings and breeding 

females included antimicrobial volatile components produced by symbiotic bacteria that provide 

protection against feather-degrading bacteria.  Bisson et al. (2009) found that the plumage 

microbial community of nearctic migratory birds varies with phase of the annual cycle. They 

suggested that, among other factors, this difference may be due to seasonal changes in the 

composition of uropygial secretions.  

 

In this study, we identify short-chain carboxylic acids, the most abundant volatiles in captive 

gray catbird uropygial secretions, for use in future bioassays of interspecific interactions with 

arthorpods. We also examine the influence of two seasonal variables, hormones and photoperiod, 

on the abundance of these compounds.  The gray catbird, (Dumetella carolinensis) is a Nearctic-

Neotropical migratory songbird that provides a useful model for the study of the effect of 

seasonal factors.  Migratory activity in captive catbirds can be initiated by manipulation of 

photoperiod (Gwinner 1986; Berthold 2001) and exogenous hormone implants have been used to 

elevate testosterone levels in males to that observed in free-ranging breeding birds (Ketterson et 

al., 1991). We predicted that if volatiles function in intraspecific communication or in protection 

from predators or pests, they may be costly to produce, and therefore should vary seasonally with 

changes in sex hormone levels and migratory activity associated with lengthened photoperiod.  

We also tested for the effect of sex on volatile production to test the prediction that, if important 

in sexual selection, other forms of natural selection, or aspects of behavior, volatiles will vary 

between males and females. 

 

 

2. Materials and Methods 

 

2.1 Bird Handling 

We captured catbirds in July and August 2006 at three sites in north-central Ohio: Carlisle 

Reservation, Lorain County Metro Parks (41°17'N, 82°8'W), with woodland, old field and 

recreated wetland habitats, located in LaGrange, Ohio;  Firelands Scout Reservation (41°16'N, 

82°20'W), with old field and woodlands, located in Lorain County five miles west of Oberlin, 

Ohio; and Killbuck Marsh Wildlife Area (40°41'N, 81°58'W), in Wayne County, Ohio.  Birds 

were captured in mist nets, banded with a unique color band combination, weighed, and 



examined for ectoparasites.  All birds were housed in individual cages in the Oberlin College 

Animal Care Facility and fed ad libitum as described below.  

 

Catbirds were transported to University of Southern Mississippi in September 2006 and housed 

in the University Animal Research Facility as part of a separate study on the influence of 

migration and testosterone on latent viral infections. For purposes of that experiment, birds were 

randomly assigned to experimental groups (N = 10/group). We then randomly selected 

individuals from each group for analysis of uropygial secretions (sample size in parentheses). 

The groups were defined as follows, where designation ―migration‖ refers to the groups 

experiencing lengthened photoperiod and ―testosterone‖ refers to groups receiving exogenous 

testosterone via implant: male, testosterone migration (N = 5); male, testosterone non-migration 

(N = 5); male, placebo migration (N = 4); male, placebo non-migration (N = 6) male, non-

implanted non-migration (N = 4); and female, non-implanted non-migration (N = 7). In January 

2007, birds in the migratory group were photoadvanced 30 minutes each day for 8 days until 

they were at a 16:8 light:dark (L:D) photoperiod. The ‗non-migratory‘ group was kept at a 12:12 

L:D photoperiod.  The resulting activity was measured by infrared motion sensors via a data 

logger (JoAC Electronik) and activity analysis software (NI LabVIEW, National Instruments, 

Inc.).  For the testosterone treatment, males were implanted with silastic tubing (ID 1.47mm, OD 

1.96mm, length 25mm) packed with crystalline testosterone (Androsten-17B-ol-3-one, Sigma 

Chemical, St. Louis, MO), and sealed with silicone gel. This amount of testosterone elevates 

plasma testosterone to levels comparable to free-ranging, breeding male catbirds (Owen, 

unpublished data). Control birds received a placebo implant. All implants were inserted into the 

birds under sterile conditions. Hormonal assays are described in Owen et al. (2010).  Birds were 

housed in individual cages equipped with infrared sensors to monitor migratory activity and fed 

ad libitum a semi-synthetic diet consisting of meal worms, blackberries, blueberries, wheat and 

malted barley cereal, moistened ZuPreem monkey biscuits, cottage cheese, freeze-dried crickets, 

and a vitamin supplement. Body condition was monitored bimonthly by weighing and by 

assessing the extent of fat (Helms and Drury, 1960) and muscle (Bairlein et al., 1995) stores. 

Birds were euthanized with carbon dioxide and necropsied in March 2007, at which time 

uropygial glands were collected and frozen at -80˚C until sampling. 

 

2.2 Sample Collection 

For each analysis, a uropygial gland was removed from cold storage and a sterile blade was used 

to dissect the uropygial lobe from the gland. The lobe, which contains the secretory tissue, was 

identified by its yellow color and oily appearance. Forceps were used to press the gland fragment 

across the inner walls of a 1.8-ml vial that had been baked at 110˚C along with its septum cap for 

at least 1 hr before sampling. Approximately 6 mg of uropygial secretion was collected from 

each gland by this method (mean ± SD = 0.006 ± 0.002 g, N = 31). Sealed vials containing 

secretion were placed into a heating block maintained at 44˚C (the body temperature of gray 

catbirds) to equilibrate volatile chemicals in the headspace. A SPME fiber (75µm with 

Carboxen-PDMS coating) was exposed to the headspace for 90 min, after which the fiber was 

retracted and the adsorbed chemicals were analyzed by GC-MS.   

 

To confirm that the secretions collected as described above are representative of those applied to 

bird feathers, we compared them to secretions obtained from 1) the uropygial gland of a live, 

captive catbird and 2) an intact dissected gland of a euthanized catbird.  In both cases, the gland 



was exposed and gently messaged until a drop of fluid was observed on the end of the papilla. A 

1-ml tuberculin syringe was then used to transfer the secretion to a vial.  

 

2.3 Chemicals and Supplies 

The following chemicals were used as GC-MS standards: formic acid (96%), 2-methylpropanoic 

acid (99%), butanoic acid (99+%), 2-methylbutanoic acid (98%), 3-methylbutanoic acid (reagent 

grade), 2,2-dimethylpropanoic acid (99%), 2-methylpentanoic acid (97%), 3-methylpentanoic 

acid (99%), 4-methylpentanoic acid (99%), hexanoic acid (99.5+%) and octanoic acid (98+%) 

(Aldrich Chemical, Milwaukee, WI); acetic acid (glacial) (Acros Organics, Geel, Belgium); 

propanoic acid (certified) (Fisher Scientific, Pittsburgh, PA); pentanoic acid (technical) (Eastman 

Chemical, Kingsport, TN); heptanoic acid (99+%) (Fluka Chemical, Milwaukee, WI). Solid-

phase microextraction holders and fiber assemblies were from Supelco (Bellefonte, PA).  

 

2.4 Chromatographic Methods  

Separation and identification of volatiles from uropygial samples used a Trace GC gas 

chromatograph equipped with a Polaris Q quadrupole ion trap mass analyzer (Thermo Finnigan, 

Waltham, MA). Thermogreen LB-2 septa from Supelco were used in the injection port. Fibers 

were exposed for 10 s in a 225˚C injection port to desorb volatiles. Injection was in splitless 

mode with a 1 ml/min flow of helium. The gas chromatograph contained a polar AT-WAX 

column (15 m length, 0.25 mm ID, 0.50 µm film thickness; Alltech, Deerfield, IL.) The column 

was held at 50˚C for 1 min then ramped at 15˚C/min to a final temperature of 200˚C. Detection 

was performed in full-scan, positive ion mode over a mass-to-charge ratio (m/z) range of 33 to 

350. Initial identifications were made by searching a built-in NIST MS library. Retention times 

and mass fragmentation patterns were then confirmed by SPME/GC-MS analysis of the pure 

compounds. Integrated peak areas from the total ion chromatograms were subjected to the 

statistical analyses used for inter-group comparisons.   

  

After each analysis, the SPME fiber was cleaned by exposing it in the heated GC injection port 

for at least 10 min. Prior to incubation of the fiber with any sample or standard, a blank injection 

was done to confirm that material from previous analyses was not carried over.   

 

2.5 Statistics 

Hormone data were analyzed using mixed between-within-subjects ANOVA.  Within-subject 

variables (repeated measure) were: days of sampling, pre-implant, 3 days post-implantation 

(DPI), 9 DPI, and 14 DPI. The between-subject blocking factor was group (testosterone or 

placebo).  We met all critical assumptions for these tests.  A P-value of ≤ 0.05 was considered 

significant.  All analyses were performed using SPSS 15.0 (SPSS 2004).  

 

We conducted a Kruskal Wallace ANOVA to examine the overall effect of migration and 

testosterone on relative abundance of all carboxylic acids detected. We then tested for the effect 

of sex, lengthened photoperiod, and exogenous testosterone with a Mann-Whitney-U (SPSS 

15.0, 2004).  Values were considered statistically different at P ≤ 0.05.  

 

3. Results 

 



Through SPME sampling and GC-MS we identified the following volatile carboxylic acids: 

acetic, propanoic, 2-methylpropanoic, butanoic, and 3-methylbutanoic (Fig. 1). In 

chromatograms with high signal-to-noise ratios, we also identified pentanoic, 2-methylpentanoic, 

and hexanoic acids. Longer exposure of the SPME fiber in the injection port consistently enabled 

the identification of these less volatile acids. Although desorbing analytes for 60 s enhanced 

signal intensity, it also broadened the chromatographic peaks so that propanoic acid and 2-

methylpropanoic acid were not resolved; butanoic acid, 3-methylbutanoic acid, and pentanoic 

acid were also unresolved. Secretions collected from the uropygial gland of a live catbird and 

secretions pressed out of an intact dissected gland contained the same carboxylic acid profile as 

secretions collected from dissected sections of uropygial lobe. The identities of compounds 

detected in the uropygial secretions were confirmed by comparing their retention times and mass 

spectral fragmentation patterns to those of pure carboxylic acids. Retention times agreed to 

within ±0.02 min. The pattern of features seen in the total ion chromatogram of uropygial 

secretions was not duplicated in SPME sampling of gray catbird brain, spleen, liver, or kidney 

tissues, confirming that the sampled volatiles are present in the uropygial secretions and are not 

an artifact of the sampling or analysis process.  

 

In the experimental groups from which catbirds used in this study were randomly selected, 

testosterone levels in males receiving implants were significantly higher 3 DPI (mean = 9.34 

ng/ml) than before implantation (mean = 0.24 ng/ml; df = 8, t  = -5.36, P = 0.001). Testosterone 

levels in placebo-implanted males did not differ between pre-implant (mean = 0.80 ng/ml) and 3 

DPI (mean = 2.12 ng/ml; df = 8, t  = -0.85, P = 0.420).  All birds in the lengthened photoperiod 

group displayed migratory restlessness. In addition, we found no effect of lengthened 

photoperiod on catbird testosterone levels across time (F 1, 15 = 3.02, P = 0.103).   

 

When photoperiod treatment and testosterone treatment were examined together, we found a 

significant overall effect of treatment on propanoic and 2-methylpropanoic acids (Fig. 2).  

During subsequent pair-wise comparisons, we found that catbirds experiencing lengthened 

photoperiod had reduced signal strength of propanoic, 2-methylpropanoic, and butanoic acids 

(Table 1).  The signal strengths of propanoic and 2-methylpropanoic acids were also significantly 

lower in catbirds that received testosterone implants than placebos (Table 2). Despite these 

results, we found no additive effect of migration and testosterone.  We also found no effect of 

sex on signal strength of any of the five carboxylic acids (Table 3).   

 

4. Discussion 

 

We found that lengthened photoperiod and the resulting activity was associated with reduced 

signal strength of propanoic, 2-methylpropanoic, and butanoic acids.  This observed reduction in 

the level of three of the five carboxylic acids is notable; although the explanatory mechanism is 

beyond the scope of this study, we propose two opposing mechanisms to explain these 

observations.  Short-chain carboxylic acids are common in nature and often produced as 

metabolic by-products of bacteria; Martín-Vivaldi et al. (2010) demonstrated that butanoic acid 

is produced by symbiotic bacteria of the European hoopoe uropygial gland.  If the above acids 

from catbird uropygial glands were also produced by symbiotic bacteria, perhaps the 

physiological changes associated with increased photoperiod inhibited metabolism in these 

bacteria, thereby resulting in the reduced production of their carboxylic acid metabolic by-



products.  Moreover, if these products are antimicrobial, their altered production during 

migration could explain the variation in diversity of feather-degrading bacteria in nearctic 

migratory songbirds at different points in their annual cycle as reported by Bisson et al. (2009).  

Indeed, Martín-Vivaldi et al. demonstrated that butanoic acid inhibits growth of several bacterial 

indicator strains.  Propanoic acid was also detected in the uropygial gland of the green 

woodhoopoe (Burger et al., 2004) and appears to be a highly effective antimicrobial agent 

(Berrang et al., 2006) at high concentrations.  In addition, 2-methylpropanoic acid is believed to 

be a defensive compound in Triatoma infestans (Hemiptera: Reduviidae) (Cruz et al., 1995) and 

trace amounts of butanoic acid have been found in other Hemiptera defensive compounds (Blum, 

1981).  The degree to which symbiotic bacteria of the uropygial gland produce these acids in the 

gray catbird and their subsequent function as antimicrobials is the focus of current work.   

 

The observed decline in volatile carboxylic acids that we report is in contrast to Soini et al. 

(2007) who found increased levels of linear alcohols and some longer chain fatty acids with 

increased photoperiod in dark-eyed juncos.  They reasoned that the alcohols were the by-product 

of lipid biosynthesis and might function to communicate condition to conspecifics during mate 

choice.  Why the abundance of short-chain carboxylic acids in our study does not follow this 

predicted pattern during lipid biosynthesis is not clear.     

 

Alternatively, if production of these carboxylic acids is in fact costly for birds, reduced 

production could reflect a strategic reallocation of resources away from acid production, 

consistent with the concept of life history trade-offs (Sheldon and Verhulst, 1996). Although the 

reallocation of carbon in such a scenario is likely to be small, even the slightest reallocation of 

resources can be critical for a migratory songbird given the extreme energy demands of 

migration and associated depletion of fat reserves. In extreme cases, such a deficit can result in 

metabolism of muscle tissue (Berthold, 1975; Guglielmo et al. 2001). Furthermore, during 

migration immune function in passerines is found to be compromised (Owen and Moore 2006, 

2008). Bonneaud et al. (2006) linked major histocompatibility complex (MHC) genes, which 

code for molecules involved in resistance to pathogens, with mate choice in house sparrows; 

females appear to choose males based on MHC compatibility and diversity. They go on to 

suggest that although the cues on which female choice is based are not fully understood, the use 

of odor has been documented in fish and mammals (Brown and Eklund, 1994 and Reusch et al., 

2001; Wedekind et al., 1995) and might be important for birds as well. Soini et al. (2007) suggest 

that odorous products of MHC genes and their evolutionary precursors, CD1 genes, might be 

used by birds to indicate condition of potential mates. Allocation of resources away from 

immune function and the expression of MHC gene products during migration could also result in 

the reduced production of volatiles that we observed. Despite the absence of a definitive 

explanation, the observed decline of short-chain carboxylic acids with increased photoperiod is 

noteworthy and represents interesting avenues of future research. 

 

Reduced signal strength of propanoic and 2-methylpropanoic acids in response to exogenous 

testosterone is more difficult to interpret. Our observations are consistent with reports that gland 

secretions of other bird species vary seasonally (Soini et al., 2007; Douglas et al., 2008; 

Reneerkens et al., 2008) in response to changes in the annual cycle, such as breeding and 

migration (Sandilands et al., 2004).  However, Soini et al. reported increased secretion of even-

numbered longer-chain fatty acids, the interpretation of which was confounded by large 



individual variation. Perhaps the physiological costs of elevated testosterone impose constraints 

on the production of uropygial volatiles.  Elevated testosterone in birds has been associated with 

immunosuppression (Folstad and Karter, 1992) and decreased resistance to oxidative stress 

(Alonso-Alvarez et al., 2007).  If propanoic and 2-methylpropanoic acids are in fact produced by 

symbiotic bacteria in catbird uropygial glands, these symbionts might also incur a cost.  Diet 

might also influence the components of uropygial secretions (Sandilands et al., 2004).  However, 

because diet, and environmental conditions other than photoperiod, were constant throughout our 

laboratory experiment, we can exclude it as a factor contributing to the variation that we 

observed in this study unless testosterone treatment impaired or modified foraging behavior, a 

parameter not measured. 

 

We suggest that the short-chain, low molecular weight—and consequently highly volatile—acids 

detected in this study may be involved in olfactory communication.   Each has been found in 

intact uropygial glands from necropsied birds, uropygial lobe secretory tissue of necropsied 

birds, and in the gland secretions of live birds, strongly suggesting that they are delivered to the 

surface of the gland and distributed over the feathers during preening.  Moreover, each acid had a 

distinctive pungent odor. Although analysis of these volatiles via bioassay, currently underway, 

is necessary to determine their biological significance in intra and interspecies interactions, the 

arthropod responses that they elicit in other contexts are compelling.    

 

The relatively small number of compounds identified in this study is attributable to our sampling 

and analysis strategy. The goal of the present investigation was to identify volatiles secreted at 

high levels from catbird uropygial glands for use in future bioassays of interspecific interactions.  

More concentrated volatile compounds, detectable at a distance by arthropods such as 

mosquitoes, are of greater relevance than semi-volatiles and non-volatiles.  Our use of static 

headspace SPME sampling (Zhang and Pawliszyn, 1993) was a result of this motivation. 

Headspace sampling identifies only the most volatile compounds, whereas volatiles, semi-

volatiles, and non-volatiles may be detected using extraction methods. In addition, the polar GC 

stationary phase is most effective for polar compounds, such as carboxylic acids; analysis of the 

SPME adsorbates on a nonpolar DB5-MS column (Alltech, Deerfield, IL) gave very poorly 

resolved acid features and no other compounds of comparable abundance. The profile of 

chemical composition presented here is not intended to be exhaustive. Current investigations 

focus on more inclusive sampling methods and sampling from free-ranging catbirds at important 

points in their annual cycle. 
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Figure 1. Representative total ion chromatogram from the SPME/GC-MS analysis of ~5 mg gray 

catbird uropygial secretion. Inset represents enlarged section of chromatogram containing 

identified compounds.





Figure 2. Overall effect of treatments (nonmigratory placebo [NMP], nonmigratory testosterone 

[NMT], migratory placebo [MP], and migratory testosterone [MT]) on each of the five 

carboxylic acids detected in uropygial secretions of male gray catbirds: acetic acid, propanoic 

acid, 2-methylpropanoic acid, butanoic acid, and 3-methylbutanoic acid. Values are integrated 

peak areas extracted from the total ion chromatograms. Error bars = +/- 1 SE. 

 

 



Table 1.  Effect of lengthened photoperiod on relative abundance (area mean ± SE) of carboxylic 

acids in uropygial secretions of male gray catbirds with placebo implants  

 
Compound 

 

Migratory (N = 4) 

mean (±SE) /106 

Nonmigratory (N = 6) 

mean (±SE) /106 

Z P-value 

     
acetic acid 3.0 (± 1.1) 6.1 (± 0.9) -1.919 0.055 
propanoic acid 0.6 (± 0.3) 1.7 (± 0.2) -2.345 0.019 
2-methylpropanoic acid 0.29 (± 0.09) 0.98 (± 0.14) -2.345 0.019 
butanoic acid 0.09 (± 0.03) 0.25 (± 0.05) -2.132 0.033 
3-methylbutanoic acid 0.52 (± 0.14) 0.93 (± 0.18) -0.853 0.394 

 

 

Table 2.  Effect of exogenous testosterone on relative abundance (area mean ± SE) of carboxylic 

acids in uropygial secretions of male gray catbirds not experiencing lengthened photoperiod 

treatment.  

 
Compound 

 

Testosterone (N = 5) 

mean (±SE) /106 

Placebo (N = 6) 

mean (±SE) /106 

Z P-value 

     
acetic acid 3.9 (± 1.1) 6.1 (± 0.9) -1.643 0.100 
propanoic acid 0.8 (± 0.2) 1.7 (± 0.2) -2.191 0.028 
2-methylpropanoic acid 0.50 (± 0.16) 0.98 (± 0.14) -2.191 0.028 
butanoic acid 0.18 (± 0.05) 0.25 (± 0.05) -1.278 0.201 
3-methylbutanoic acid 0.66 (± 0.16) 0.93 (± 0.18) -0.913 0.361 

 

 

 

Table 3.  Effect of sex on relative abundance (area mean ± SE) of carboxylic acids in uropygial 

secretions of male and female gray catbirds not experiencing lengthened photoperiod treatment.  

 

 
Compound 

 

Males (N = 4) 

mean (±SE) /106 

Females (N = 7) 

mean (±SE) /106 

Z P-value 

     
acetic acid 2.1 (± 0.4) 3.5 (± 0.9) -1.134 0.257 
propanoic acid 0.60 (± 0.11) 0.9 (± 0.2) -0.378 0.705 
2-methylpropanoic acid 0.38 (± 0.12) 0.51 (± 0.16) -0.189 0.850 
butanoic acid 0.10 (± 0.02) 0.14 (± 0.04) -0.567 0.571 
3-methylbutanoic acid 0.47 (± 0.06) 0.8 (± 0.3) -0.189 0.850 
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