93 research outputs found

    Thrombin and factor Xa link the coagulation system with Liver fibrosis

    No full text
    Background: Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. Methods: HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Results Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/− 4.12) compared to culturing with FXa or thrombin alone (26.90%+/− 8.90, p = 0.02; 13.1%+/− 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). Conclusions: FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Integration of gene expression data with prior knowledge for network analysis and validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstruction of protein-protein interaction or metabolic networks based on expression data often involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived from knowledge bases.</p> <p>We analyze networks designed to come as close as possible to data measured in vivo, both with respect to the set of nodes which were taken to be expressed in experiment as well as with respect to the interactions between them which were taken from manually curated databases</p> <p>Results</p> <p>A signaling network derived from the TRANSPATH database and a metabolic network derived from KEGG LIGAND are each filtered onto expression data from breast cancer (SAGE) considering different levels of restrictiveness in edge and vertex selection.</p> <p>We perform several validation steps, in particular we define pathway over-representation tests based on refined null models to recover functional modules. The prominent role of the spindle checkpoint-related pathways in breast cancer is exhibited. High-ranking key nodes cluster in functional groups retrieved from literature. Results are consistent between several functional and topological analyses and between signaling and metabolic aspects.</p> <p>Conclusions</p> <p>This construction involved as a crucial step the passage to a mammalian protein identifier format as well as to a reaction-based semantics of metabolism. This yielded good connectivity but also led to the need to perform benchmark tests to exclude loss of essential information. Such validation, albeit tedious due to limitations of existing methods, turned out to be informative, and in particular provided biological insights as well as information on the degrees of coherence of the networks despite fragmentation of experimental data.</p> <p>Key node analysis exploited the networks for potentially interesting proteins in view of drug target prediction.</p

    Where Two Are Fighting, the Third Wins: Stronger Selection Facilitates Greater Polymorphism in Traits Conferring Competition-Dispersal Tradeoffs

    Get PDF
    A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.ope

    The Repeatability of Adaptive Radiation During Long-Term Experimental Evolution of Escherichia coli in a Multiple Nutrient Environment

    Get PDF
    Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events) and necessity (deterministic events) contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1) fitness, 2) mean colony size, and 3) colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and promoted parallel phenotypic adaptive radiations in all independently evolved microcosms

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases

    Experimental evolution of adaptive divergence under varying degrees of gene flow

    Get PDF
    Adaptive divergence is the key evolutionary process generating biodiversity by means of natural selection. Yet, the conditions under which it can arise in the presence of gene flow remain contentious. To address this question, we subjected 132 sexually reproducing fission yeast populations, sourced from two independent genetic backgrounds, to disruptive ecological selection and manipulated the level of migration between environments. Contrary to theoretical expectations, adaptive divergence was most pronounced when migration was either absent (allopatry) or maximal (sympatry), but was much reduced at intermediate rates (parapatry and local mating). This effect was apparent across central life-history components (survival, asexual growth and mating) but differed in magnitude between ancestral genetic backgrounds. The evolution of some fitness components was constrained by pervasive negative correlations (trade-off between asexual growth and mating), while others changed direction under the influence of migration (for example, survival and mating). In allopatry, adaptive divergence was mainly conferred by standing genetic variation and resulted in ecological specialization. In sympatry, divergence was mainly mediated by novel mutations enriched in a subset of genes and was characterized by the repeated emergence of two strategies: an ecological generalist and an asexual growth specialist. Multiple loci showed consistent evidence for antagonistic pleiotropy across migration treatments providing a conceptual link between adaptation and divergence. This evolve-and-resequence experiment shows that rapid ecological differentiation can arise even under high rates of gene flow. It further highlights that adaptive trajectories are governed by complex interactions of gene flow, ancestral variation and genetic correlations

    Consensus statement on abusive head trauma in infants and young children

    Get PDF
    Abusive head trauma (AHT) is the leading cause of fatal head injuries in children younger than 2 years. A multidisciplinary team bases this diagnosis on history, physical examination, imaging and laboratory findings. Because the etiology of the injury is multifactorial (shaking, shaking and impact, impact, etc.) the current best and inclusive term is AHT. There is no controversy concerning the medical validity of the existence of AHT, with multiple components including subdural hematoma, intracranial and spinal changes, complex retinal hemorrhages, and rib and other fractures that are inconsistent with the provided mechanism of trauma. The workup must exclude medical diseases that can mimic AHT. However, the courtroom has become a forum for speculative theories that cannot be reconciled with generally accepted medical literature. There is no reliable medical evidence that the following processes are causative in the constellation of injuries of AHT: cerebral sinovenous thrombosis, hypoxic-ischemic injury, lumbar puncture or dysphagic choking/vomiting. There is no substantiation, at a time remote from birth, that an asymptomatic birth-related subdural hemorrhage can result in rebleeding and sudden collapse. Further, a diagnosis of AHT is a medical conclusion, not a legal determination of the intent of the perpetrator or a diagnosis of murder. We hope that this consensus document reduces confusion by recommending to judges and jurors the tools necessary to distinguish genuine evidence-based opinions of the relevant medical community from legal arguments or etiological speculations that are unwarranted by the clinical findings, medical evidence and evidence-based literature
    corecore