415 research outputs found

    Statistical Properties of Nonlinear Shell Models of Turbulence from Linear Advection Models: Rigorous Results

    Full text link
    In a recent paper it was proposed that for some nonlinear shell models of turbulence one can construct a linear advection model for an auxiliary field such that the scaling exponents of all the structure functions of the linear and nonlinear fields coincide. The argument depended on an assumption of continuity of the solutions as a function of a parameter. The aim of this paper is to provide a rigorous proof for the validity of the assumption. In addition we clarify here when the swap of a nonlinear model by a linear one will not work.Comment: 7 pages, 4 figures, submitted to Nonlinearit

    A Note on the Regularity of Inviscid Shell Model of Turbulence

    Get PDF
    In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade initiated in \cite{CLT05}. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy unCkn1/3(nlog(n+1))1|{u_n}| \le C k_n^{-1/3} (\sqrt{n} \log(n+1))^{-1}, for some positive absolute constant CC, which is the analogue of the Onsager's conjecture for the Euler's equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the ``two-dimensional'' parameters regime

    Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence

    Get PDF
    In this work we derive a lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing and for sufficiently small viscosity term ν\nu, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to logλν1\log_\lambda \nu^{-1} for all values of the governing parameter ϵ\epsilon, except for ϵ=1\epsilon=1. The obtained lower bounds are sharp, matching the upper bounds for the dimension of the global attractor obtained in our previous work. Moreover, we show different scenarios of the transition to chaos for different parameters regime and for specific forcing. In the ``three-dimensional'' regime of parameters this scenario changes when the parameter ϵ\epsilon becomes sufficiently close to 0 or to 1. We also show that in the ``two-dimensional'' regime of parameters for a certain non-zero forcing term the long-time dynamics of the model becomes trivial for any value of the viscosity

    Counter and Complicit Masculine Discourse Among Men’s Shed Members

    Get PDF
    Men’s Sheds is a growing international movement aimed at providing men with places and activities that facilitate social connectedness. Despite Men’s Sheds’ focus on males, little attention has been paid to masculinities within the specific context of these settings. The current study used a gender relations framework to explore the ways in which attendees discussed Men’s Sheds, with particular attention to discussions that were complicit and counter to traditional, hegemonic views of masculinity, and diverse positions in between these binaries. The data consisted of transcripts and field notes from four focus groups comprised of mostly older, White, retired male members of a Canadian shed (N = 22). The analysis revealed three overall themes: (1) focus on work, (2) independence, and (3) need for male-focused spaces. These themes and associated subthemes suggest that shed members ascribe to dominant masculine values and ideals, but also support more fluid and flexible views of masculinity. Implications are discussed for how working with an array of masculinities within the Men’s Sheds movement will be helpful with respect to their future growth in Canada and internationally

    A framework for mixing methods in quantitative measurement development, validation, and revision: A case study

    Get PDF
    A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier’s work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of procedures best achieved through mixed methods research. It also offers a systematic guide concerning how these procedures may be undertaken through detailing key “stages,” “levels,” and practical “tasks.” A case study illustrates how qualitative and quantitative methods may be mixed through the use of the proposed framework in the cross-cultural content- and construct-related validation and subsequent revision of a quantitative measure.The contribution of this article to mixed methods research literature is briefly discussed

    Global and regional brain metabolic scaling and its functional consequences

    Get PDF
    Background: Information processing in the brain requires large amounts of metabolic energy, the spatial distribution of which is highly heterogeneous reflecting complex activity patterns in the mammalian brain. Results: Here, it is found based on empirical data that, despite this heterogeneity, the volume-specific cerebral glucose metabolic rate of many different brain structures scales with brain volume with almost the same exponent around -0.15. The exception is white matter, the metabolism of which seems to scale with a standard specific exponent -1/4. The scaling exponents for the total oxygen and glucose consumptions in the brain in relation to its volume are identical and equal to 0.86±0.030.86\pm 0.03, which is significantly larger than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on body mass. Conclusions: These findings show explicitly that in mammals (i) volume-specific scaling exponents of the cerebral energy expenditure in different brain parts are approximately constant (except brain stem structures), and (ii) the total cerebral metabolic exponent against brain volume is greater than the much-cited Kleiber's 3/4 exponent. The neurophysiological factors that might account for the regional uniformity of the exponents and for the excessive scaling of the total brain metabolism are discussed, along with the relationship between brain metabolic scaling and computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen

    Sensorimotor Behavioral Tests for Use in a Juvenile Rat Model of Traumatic Brain Injury: Assessment of Sex Differences

    Get PDF
    Modeling juvenile traumatic brain injury (TBI) in rodents presents several unique challenges compared to adult TBI, one of which is selecting appropriate sensorimotor behavioral tasks that enable the assessment of the extent of injury and recovery over time in developing animals. To address this challenge, we performed a comparison of common sensorimotor tests in Long-Evans rats of various sizes and developmental stages (postnatal days 16–45, 35–190 g). Tests were compared and selected for their developmental appropriateness, scalability for growth, pre-training requirements, and throughput capability. Sex differences in response to TBI were also assessed. Grid walk, automated gait analysis, rotarod, beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer were evaluated. Grid walk, gait analysis, and rotarod failed to meet one or more of the evaluation criteria. Beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer satisfied all criteria and were capable of detecting motor abnormalities in rats subjected to controlled cortical impact on postnatal day 17. No sex differences were detected in the acute effects of TBI or functional recovery during the 28 days after injury using these tests. This demonstrates the utility of these tests for the evaluation of sensorimotor function in studies using rat models of pediatric TBI, and suggest that pre-pubertal males and females respond similarly to TBI with respect to sensorimotor outcomes

    Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    Get PDF
    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% lower than those fed a control diet containing adequate α-linolenic acid. Decreased brain DHA produced a significant main effect of decreased density of ventral striatal D2-like receptors. Virgin females with decreased DHA also exhibited higher density of D1-like receptors in the caudate nucleus than virgin females with normal DHA. These receptor alterations are similar to those found in several rodent models of depression, and are consistent with the proposed hypodopaminergic basis for anhedonia and motivational deficits in depression

    Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms

    Get PDF
    This paper deals with the estimation of unknown signals in bioreactors using sliding observers. Particular attention is drawn to estimate the specific growth rate of microorganisms from measurement of biomass concentration. In a recent article, notions of high-order sliding modes have been used to derive a growth rate observer for batch processes. In this paper we generalize and refine these preliminary results. We develop a new observer with a different error structure to cope with other types of processes. Furthermore, we show that these observers are equivalent, under coordinate transformations and time scaling, to the classical super-twisting differentiator algorithm, thus inheriting all its distinctive features. The new observers’ family achieves convergence to timevarying unknown signals in finite time, and presents the best attainable estimation error order in the presence of noise. In addition, the observers are robust to modeling and parameter uncertainties since they are based on minimal assumptions on bioprocess dynamics. In addition, they have interesting applications in fault detection and monitoring. The observers performance in batch, fed-batch and continuous bioreactors is assessed by experimental data obtained from the fermentation of Saccharomyces Cerevisiae on glucose.This work was supported by the National University of La Plata (Project 2012-2015), the Agency for the Promotion of Science and Technology ANPCyT (PICT2007-00535) and the National Research Council CONICET (PIP112-200801-01052) of Argentina; the Technical University of Valencia (PAID-02-09), the CICYT (DPI2005-01180) and AECID (A/024186/09) of Spain; and by the project FEDER of the European Union.De Battista, H.; Picó Marco, JA.; Garelli, F.; Navarro Herrero, JL. (2012). Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms. Bioprocess and Biosystems Engineering. 35(9):1-11. https://doi.org/10.1007/s00449-012-0752-yS111359Aborhey S, Williamson D (1978) State amd parameter estimation of microbial growth process. Automatica 14:493–498Bastin G, Dochain D (1986) On-line estimation of microbial specific growth rates. Automatica 22:705–709Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, AmsterdamBejarano F, Fridman L (2009) Unbounded unknown inputs estimation based on high-order sliding mode differentiator. In: Proceedings of the 48th IEEE conference on decision and control, pp 8393–8398Corless M, Tu J (1998) State and input estimation for a class of uncertain systems. Automatica 34(6):757–764Dabros M, Schler M, Marison I (2010) Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosyst Eng 33:1109–1118Davila A, Moreno J, Fridman L (2010) Variable gains super-twisting algorithm: a lyapunov based design. In: American control conference (ACC), 2010, pp 968–973Dávila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Transact Automatic Control 50(11):1785–1789De Battista H, Picó J, Garelli F, Vignoni A (2011) Specific growth rate estimation in (fed-)batch bioreactors using second-order sliding observers. J Process Control 21:1049–1055Dochain D (2001) Bioprocess control. Wiley, HobokenDochain D (2003) State and parameter estimation in chemical and biochemical processes: a tutorial. J Process Control 13(8):801–818Edwards C, Spurgeon S, Patton R (2000) Sliding mode observers for fault detection and isolation. Automatica 36(2):541–553Evangelista C, Puleston P, Valenciaga F, Fridman L (2012) Lyapunov designed super-twisting sliding mode control for wind energy conversion optimization. Indus Electron IEEE Transact. doi: 10.1109/TIE.2012.2188256Farza M, Busawon K, Hammouri H (1998) Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors. Automatica 34(3):301–318Fridman L, Davila J, Levant A (2008) High-order sliding modes observation. In: International workshop on variable structure systems, pp 203–208Fridman L, Levant A (2002) Sliding mode control in engineering, higher-order sliding modes. Marcel Dekker, Inc., New York, pp 53–101Fridman L, Shtessel Y, Edwards C, Yan X (2008) Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int J Robust Nonlinear Control 18(3–4):399–412Gauthier J, Hammouri H, Othman S (1992) A simple observer for nonlinear systems: applications to bioreactors. IEEE Transact Automatic Control 37(6):875–880Gnoth S, Jenzsch M, Simutis R, Lubbert A (2008) Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31(1):21–39Hitzmann B, Broxtermann O, Cha Y, Sobieh O, Stärk E, Scheper T (2000) The control of glucose concentration during yeast fed-batch cultivation using a fast measurement complemented by an extended kalman filter. Bioprocess Eng 23(4):337–341Kiviharju K, Salonen K, Moilanen U, Eerikainen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J Indus Microbiol Biotechnol 35(7):657–665Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9/10):924–941Lubenova V, Rocha I, Ferreira E (2003) Estimation of multiple biomass growth rates and biomass concentration in a class of bioprocesses. Bioprocess Biosyst Eng 25:395–406Moreno J, Alvarez J, Rocha-Cozatl E, Diaz-Salgado J (2010) Super-twisting observer-based output feedback control of a class of continuous exothermic chemical reactors. In: Proceedings of the 9th IFAC international symposium on dynamics and control of process systems, pp 719–724. Leuven, BelgiumMoreno J, Osorio M (2008) A Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the 47th IEEE conference on decision and control. Cancún, México, pp 2856–2861Moreno J, Osorio M (2012) Strict Lyapunov functions for the super-twisting algorithm. IEEE Transact Automatic Control 57:1035–1040Navarro J, Picó J, Bruno J, Picó-Marco E, Vallés S (2001) On-line method and equipment for detecting, determining the evolution and quantifying a microbial biomass and other substances that absorb light along the spectrum during the development of biotechnological processes. Patent ES20010001757, EP20020751179Neeleman Boxtel (2001) Estimation of specific growth rate from cell density measurements. Bioprocess Biosyst Eng 24(3):179–185November E, van Impe J (2002) The tuning of a model-based estimator for the specific growth rate of Candidautilis. Bioprocess Biosyst Eng 25:1–12Park Y, Stein J (1988) Closed-loop, state and input observer for systems with unknown inputs. Int J Control 48(3):1121–1136Perrier M, de Azevedo SF, Ferreira E, Dochain D (2000) Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters. Control Eng Pract 8:377–388Picó J, De Battista H, Garelli F (2009) Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement. J Process Control 19(8):1314–1323. Special section on hybrid systems: modeling, simulation and optimizationSchenk J, Balaszs K, Jungo C, Urfer J, Wegmann C, Zocchi A, Marison I, von Stockar U (2008) Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut + strain. Biotecnol Bioeng 99(2):368–377Shtessel Y, Taleb M, Plestan F (2012) A novel adaptive-gain supertwisting sliding mode controller: Methodol Appl Automatica (in press)Soons Z, van Straten G, van der Pol L, van Boxtel A (2008) On line automatic tuning and control for fed-batch cultivation. Bioprocess Biosyst Eng 31(5):453–467Utkin V, Poznyak A, Ordaz P (2011) Adaptive super-twist control with minimal chattering effect. In: Proceedings of 50th IEEE conference on decision and control and European control conference. Orlando, pp 7009–7014Veloso A, Rocha I, Ferreira E (2009) Monitoring of fed-batch E. coli fermentations with software sensors. Bioprocess Biosyst Eng 32(3):381–388Venkateswarlu C (2004) Advances in monitoring and state estimation of bioreactors. J Sci Indus Res 63:491–498Zamboni N, Fendt S, Rühl M, Sauer U (2009) 13c-based metabolic flux analysis. Nat Protocols 4:878–892Zorzetto LFM, Wilson JA (1996) Monitoring bioprocesses using hybrid models and an extended kalman filter. Comput Chem Eng 20(Suppl 1):S689–S69
    corecore