9 research outputs found

    Glass-Ceramic Synthesis of Cr-Substituted Strontium Hexaferrite Nanoparticles with Enhanced Coercivity

    No full text
    Magnetically hard ferrites attract considerable interest due to their ability to maintain a high coercivity of nanosized particles and therefore show promising applications as nanomagnets ranging from magnetic recording to biomedicine. Herein, we report an approach to prepare nonsintered single-domain nanoparticles of chromium-substituted hexaferrite via crystallization of glass in the system SrO–Fe2O3–Cr2O3–B2O3. We have observed a formation of plate-like hexaferrite nanoparticles with diameters changing from 20 to 190 nm depending on the annealing temperature. We demonstrated that chromium substitution led to a significant improvement of the coercivity, which varied from 334 to 732 kA m−1 for the smallest and the largest particles, respectively. The results provide a new strategy for producing high-coercivity ferrite nanomagnets

    Synthesis of sandwiched composite nanomagnets by epitaxial growth of Fe3O4 layers on SrFe10Cr2O19 nanoplates in high-boiling organic solvent

    No full text
    Herein, we demonstrate the synthesis of sandwiched composite nanomagnets, which consist of hard magnetic Cr-substituted hexaferrite cores and magnetite outer layers. The hexaferrite plate-like nanoparticles, with average dimensions of 36.3 nm × 5.2 nm, were prepared via a glass crystallization method and were covered by spinel-type iron oxide via thermal decomposition of iron acetylacetonate in a hexadecane solution. The hexaferrite nanoplates act as seeds for the epitaxial growth of the magnetite, which results in uniform continuous outer layers on both sides. The thickness of the layers can be adjusted by controlling the concentration of metal ions. In this way, layers with an average thickness of 3.7 and 4.9 nm were obtained. Due to an atomically smooth interface, the magnetic composites demonstrate the exchange coupling effect, acting as single phases during remagnetization. The developed approach can be applied to any spinel-type material with matching lattice parameters and opens the way to expand the performance of hexaferrite nanomagnets due to a combination of various functional properties.</p

    Spray-Deposited Anisotropic Ferromagnetic Hybrid Polymer Films of PS- b -PMMA and Strontium Hexaferrite Magnetic Nanoplatelets

    No full text
    Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors
    corecore