1,917 research outputs found
Clinical Usefulness of Streptococcus pneumoniae Urinary Antigen in Patients Hospitalized with Non-Nosocomial Pneumonia
Introduction : Community acquired pneumonia (CAP) is a major cause of hospital admissions and mortality in developed countries. Nevertheless, in about half of the cases a microbial etiology can`t be determined. The need to improve the diagnostic tools of this disease has led to the development of new techniques, such as Streptococcus pneumoniae urinary antigen. Objectives : To analyse the usefulness of the urinary antigen in determining the etiologic diagnosis of pneumonias and its influence in the antibiotherapy modification. Methods : Retrospective analysis of hospitalized patients in 2010 with CAP (n=226) and healthcare associated pneumonia (HCAP) [n=64] diagnosis whose urinary pneumococcal antigen has been analyzed. Results: Median age was significantly greater in HCAP. HCAP patients had more co-morbidities and higher severity scores. Twenty-one patients in the CAP group and 4 patients in the HCAP group had positive pneumococcal antigen. The sensibility of urinary antigen in determining pneumococcal pneumonias was 36% and the specificity 89%. Almost one quarter of the 25 patients with positive urinary antigen had appropriate reductions in antimicrobial spectra, which was not statistically significant when compared with the group with negative urinary antigen. There was a significant relation between a positive urinary antigen and pneumonia severity. Conclusions: Considering its high specificity, the urinary antigen is useful to confirm the presence of pneumococcal pneumonia.
Potentially urinary antigen can help to avoid unnecessary treatments in hospitalized patients with CAP
FAST CARS: Engineering a Laser Spectroscopic Technique for Rapid Identification of Bacterial Spores
Airborne contaminants, e.g., bacterial spores, are usually analyzed by time
consuming microscopic, chemical and biological assays. Current research into
real time laser spectroscopic detectors of such contaminants is based on e.g.
resonant Raman spectroscopy. The present approach derives from recent
experiments in which atoms and molecules are prepared by one (or more) coherent
laser(s) and probed by another set of lasers. The connection with previous
studies based on "Coherent Anti-Stokes Raman Spectroscopy" (CARS) is to be
noted. However generating and utilizing maximally coherent oscillation in
macromolecules having an enormous number of degrees of freedom is much more
challenging. This extension of the CARS technique is called FAST CARS
(Femtosecond Adaptive Spectroscopic Techniques for Coherent Anti-Stokes Raman
Spectroscopy), and the present paper proposes and analyses ways in which it
could be used to rapidly identify pre-selected molecules in real time.Comment: 43 pages, 21 figures; replacement with references added. Submitted to
the Proceedings of National Academy of Science
Neutron Drops and Skyrme Energy-Density Functionals
The J=0 ground state of a drop of 8 neutrons and the lowest
1/2 and 3/2 states of 7-neutron drops, all in an external well, are
computed accurately with variational and Green's function Monte Carlo methods
for a Hamiltonian containing the Argonne two-nucleon and Urbana IX
three-nucleon potentials. These states are also calculated using Skyrme-type
energy-density functionals. Commonly used functionals overestimate the central
density of these drops and the spin-orbit splitting of 7-neutron drops.
Improvements in the functionals are suggested
Wavelet Based Fractal Analysis of Airborne Pollen
The most abundant biological particles in the atmosphere are pollen grains
and spores. Self protection of pollen allergy is possible through the
information of future pollen contents in the air. In spite of the importance of
airborne pol len concentration forecasting, it has not been possible to predict
the pollen concentrations with great accuracy, and about 25% of the daily
pollen forecasts have resulted in failures. Previous analysis of the dynamic
characteristics of atmospheric pollen time series indicate that the system can
be described by a low dimensional chaotic map. We apply the wavelet transform
to study the multifractal characteristics of an a irborne pollen time series.
We find the persistence behaviour associated to low pollen concentration values
and to the most rare events of highest pollen co ncentration values. The
information and the correlation dimensions correspond to a chaotic system
showing loss of information with time evolution.Comment: 11 pages, 7 figure
Systematic study of Coulomb distortion effects in exclusive (e,e'p) reactions
A technique to deal with Coulomb electron distortions in the analysis of
(e,e'p) reactions is presented. Thereby, no approximations are made. The
suggested technique relies on a partial-wave expansion of the electron wave
functions and a multipole decomposition of the electron and nuclear current in
momentum space. In that way, we succeed in keeping the computational times
within reasonable limits. This theoretical framework is used to calculate the
quasielastic (e,e'p) reduced cross sections for proton knockout from the
valence shells in O, Ca, Zr and Pb. The
final-state interaction of the ejected proton with the residual nucleus is
treated within an optical potential model. The role of electron distortion on
the extracted spectroscopic factors is discussed.Comment: 45 pages, 10 encapsulated postscript figures, Revtex, uses epsfig.sty
and fancybox.sty, to be published in Physical Review
Precision Measurement of PArity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment
The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is
dedicated to measure with high precision the parity violating asymmetry in the
emission after capture of spin polarized cold neutrons in
para-hydrogen. The measurement will determine unambiguously the weak
pion-nucleon-nucleon () coupling constant {\it f}Comment: Proceedings of the PANIC'05 Conference, Santa Fe, NM, USA, October
24-28, 2005, 3 pages, 2 figure
Ground state correlations and mean-field in O
We use the coupled cluster expansion ( method) to generate the
complete ground state correlations due to the NN interaction. Part of this
procedure is the calculation of the two-body G matrix inside the nucleus in
which it is being used. This formalism is being applied to in a
configuration space of 50 . The resulting ground state wave
function is used to calculate the binding energy and one- and two-body
densities for the ground state of .Comment: 9 pages, 9 figures, LaTe
High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams
We have developed a radio-frequency resonant spin rotator to reverse the
neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high
efficiency over a broad cold neutron energy range. The effect of the spin
reversal by the rotator on the neutron beam phase space is compared
qualitatively to RF neutron spin flippers based on adiabatic fast passage. The
spin rotator does not change the kinetic energy of the neutrons and leaves the
neutron beam phase space unchanged to high precision. We discuss the design of
the spin rotator and describe two types of transmission-based neutron spin-flip
efficiency measurements where the neutron beam was both polarized and analyzed
by optically-polarized 3He neutron spin filters. The efficiency of the spin
rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from
3.3 to 18.4 meV over the full phase space of the beam. As an example of the
application of this device to an experiment we describe the integration of the
RF spin rotator into an apparatus to search for the small parity-violating
asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the
NPDGamma collaboration at LANSCE
A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements
We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment
to search for a small parity-violating directional asymmetry in the angular
distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons
by protons with a sensitivity of several ppb. The weak pion-nucleon coupling
constant can be determined from this asymmetry. The small size of the asymmetry
requires a high cold neutron flux, control of systematic errors at the ppb
level, and the use of current mode gamma-ray detection with vacuum photo diodes
and low-noise solid-state preamplifiers. The average detector photoelectron
yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in
the measurement is therefore dominated by the fluctuations in the number of
gamma rays absorbed in the detector (counting statistics) rather than the
intrinsic detector noise. The detectors were tested for noise performance,
sensitivity to magnetic fields, pedestal stability and cosmic background. False
asymmetries due to gain changes and electronic pickup in the detector system
were measured to be consistent with zero to an accuracy of in a few
hours. We report on the design, operating criteria, and the results of
measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table
Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response
Predictions for electron induced proton knockout from the and
shells in O are presented using various approximations for the
relativistic nucleonic current. Results for the differential cross section,
transverse-longitudinal response () and left-right asymmetry
are compared at (GeV/c) corresponding to TJNAF experiment
89-003. We show that there are important dynamical and kinematical relativistic
effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data
from the figure
- …
