A technique to deal with Coulomb electron distortions in the analysis of
(e,e'p) reactions is presented. Thereby, no approximations are made. The
suggested technique relies on a partial-wave expansion of the electron wave
functions and a multipole decomposition of the electron and nuclear current in
momentum space. In that way, we succeed in keeping the computational times
within reasonable limits. This theoretical framework is used to calculate the
quasielastic (e,e'p) reduced cross sections for proton knockout from the
valence shells in 16O, 40Ca, 90Zr and 208Pb. The
final-state interaction of the ejected proton with the residual nucleus is
treated within an optical potential model. The role of electron distortion on
the extracted spectroscopic factors is discussed.Comment: 45 pages, 10 encapsulated postscript figures, Revtex, uses epsfig.sty
and fancybox.sty, to be published in Physical Review