13,195 research outputs found

    Effect of Strong Disorder in a 3-Dimensional Topological Insulator: Phase Diagram and Maps of the Z2 Invariant

    Full text link
    We study the effect of strong disorder in a 3-dimensional topological insulators with time-reversal symmetry and broken inversion symmetry. Firstly, using level statistics analysis, we demonstrate the persistence of delocalized bulk states even at large disorder. The delocalized spectrum is seen to display the levitation and pair annihilation effect, indicating that the delocalized states continue to carry the Z2 invariant after the onset of disorder. Secondly, the Z2 invariant is computed via twisted boundary conditions using an efficient numerical algorithm. We demonstrate that the Z2 invariant remains quantized and non-fluctuating even after the spectral gap becomes filled with dense localized states. In fact, our results indicate that the Z2 invariant remains quantized until the mobility gap closes or until the Fermi level touches the mobility edges. Based on such data, we compute the phase diagram of the Bi2Se3 topological material as function of disorder strength and position of the Fermi level.Comment: references added; final versio

    Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes

    Full text link
    We study a stochastic lattice gas of particles undergoing asymmetric diffusion in two dimensions. Transitions between a low-density uniform phase and high-density non-uniform phases characterized by localized or extended structure are found. We develop a mean-field theory which relates coarse-grained parameters to microscopic ones. Detailed predictions for finite-size (LL) scaling and density profiles agree excellently with simulations. Unusual large-LL behavior of the transition point parallel to that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after source code, LATeX, to be published as a Phys. Rev. Let

    A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    Get PDF
    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems

    A probabilistic and information theoretic interpretation of quantum evolutions

    Get PDF
    In quantum mechanics, outcomes of measurements on a state have a probabilistic interpretation while the evolution of the state is treated deterministically. Here we show that one can also treat the evolution as being probabilistic in nature and one can measure `which unitary' happened. Likewise, one can give an information-theoretic interpretation to evolutions by defining the entropy of a completely positive map. This entropy gives the rate at which the informational content of the evolution can be compressed. One cannot compress this information and still have the evolution act on an unknown state, but we demonstrate a general scheme to do so probabilistically. This allows one to generalize super-dense coding to the sending of quantum information. One can also define the ``interaction-entanglement'' of a unitary, and concentrate this entanglement.Comment: 9 page

    Comment on ``Dynamic behavior of anisotropic non-equilibrium driving lattice gases''

    Full text link
    In a recent Letter Albano and Saracco study the dynamic critical behavior of some anisotropic driven lattice gases by Monte Carlo (MC) simulations. In this Comment we point out that the Ans\"atze they use to relate the measured scaling exponents with the critical exponents analytically computed within different field-theoretical approaches do not take properly into account the strongly anisotropic nature of the phase transition, by implicitly assuming z=z=zz = z_{\bot} = z_{\parallel}. As a consequence, at variance with the claims by the authors, their MC data are not conclusive to determine which one of the field theories proposed in the literature correctly describes the universal properties of the phase transition in these lattice gases.Comment: 1 pag

    Dynamic behavior of anisotropic non-equilibrium driving lattice gases

    Full text link
    It is shown that intrinsically anisotropic non-equilibrium systems relaxing by a dynamic process exhibit universal critical behavior during their evolution toward non-equilibrium stationary states. An anisotropic scaling anzats for the dynamics is proposed and tested numerically. Relevant critical exponents can be evaluated self-consistently using both the short- and long-time dynamics frameworks. The obtained results allow us to clarify a long-standing controversy about the theoretical description, the universality and the origin of the anisotropy of driven diffusive systems, showing that the standard field theory does not hold and supporting a recently proposed alternative theory.Comment: 4 pages, 2 figure

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    Viability of competing field theories for the driven lattice gas

    Full text link
    It has recently been suggested that the driven lattice gas should be described by a novel field theory in the limit of infinite drive. We review the original and the new field theory, invoking several well-documented key features of the microscopics. Since the new field theory fails to reproduce these characteristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the critical exponents associated with this theory, are re-analyzed and shown to be incorrect.Comment: 4 pages, revtex, no figure

    Is the particle current a relevant feature in driven lattice gases?

    Full text link
    By performing extensive MonteCarlo simulations we show that the infinitely fast driven lattice gas (IDLG) shares its critical properties with the randomly driven lattice gas (RDLG). All the measured exponents, scaling functions and amplitudes are the same in both cases. This strongly supports the idea that the main relevant non-equilibrium effect in driven lattice gases is the anisotropy (present in both IDLG and RDLG) and not the particle current (present only in the IDLG). This result, at odds with the predictions from the standard theory for the IDLG, supports a recently proposed alternative theory. The case of finite driving fields is also briefly discussed.Comment: 4 pages. Slightly improved version. Journal Reference: To appear in Phys. Rev. Let
    corecore