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In quantum mechanics, outcomes of measurements on a state have a probabilistic interpretation while the
evolution of the state is treated deterministically. Here we show that one can also treat the evolution as being
probabilistic in nature and one can measure which unitary acted. In further analogy to states, one can also
choose which basis of unitaries to measure. Likewise, one can give an information-theoretic interpretation to
evolutions by defining the entropy of a completely positive map. This entropy gives the rate at which the
informational content of the evolution can be compressed. One cannot compress this information and still have
the evolution act on an unknown state, but we demonstrate a general scheme to do so probabilistically. This
allows one to generalize super-dense coding to the sending of quantum information. One can also define the
“interaction-entanglement” of a unitary, and concentrate this entanglement.
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[. INTRODUCTION perposition of unitary evolutions, collapse to a certain evo-
lution and a corresponding probability law, can in fact be
An isolated system is represented in quantum mechanicgtributed in a natural fashion to unitary evolutions, as well
by a state vector that conveys statistical predictions for meaas to the more general case of nonunitary evolutions that can
surement outcomes and manifests phenomena such as supss- described by completely positif€P) trace preserving
positions, and entanglement. In contrast, the temporal evoldinear maps. Particularly, we show that a measurement of
tion law of the state is determined by the unitary operatorwhich evolution occurred’ during a certain time interval
U=exp-iHt/A where the HamiltoniarH is dictated either ‘collapses’ the quantum evolution to a particular evolution
by external classical potentials and/or universal interactiongith a probability given by a simple extension of the ordi-
between fields or particles. Therefore, while the state vectopary probability law. Our results provide an operational
manifests the non-deterministic features of quantum mecharneaning to a formal correspondence between states and op-
ics, the temporal evolution law of an isolated system is re£rations introduced by Jamiotkowski] and Choi[2].
garded as fully deterministic. This asymmetry between the Although the present work is aimed at extending concepts
properties of states and evolutions is also maintained withi@SCribed to states into the domain of evolutions, it also has

the framework of quantum information theory wherein the@PPplications to quantum computation in that we present
information is carried by the state alone. methods which can be used to monitor the interactions of a

Psychologically, the asymmetry may partly result from quantum device without changing the physical setup of the

o ) - . device. There are also links between the measurement of
thinking of the unitary evolution as heing due to some exter'unitaries, and syndrome detection in error correction codes.

nal mac;roscopic Qevice such as a large magnet, while the Next, we turn to the question of whether operations have
state might be a single electron. Thus we think of the state 3fformational content in a manner analogous to quantum

being quantum and probabilistic in nature, while the unitaryg..c \we find that one can assign a state independent en-

evolution is treated deterministically. However, we should : .
. ’ . tropy to an arbitrary completely positif€P) map, and that
remember that the state of the electron is also determined b( by y P yDp EP) P

= devi S Gerlach hi his entropy gives the rate at which the informational con-
some macroscopic device Stern-Gerlach machine Say. tents of the map can be compressed. Here, the information

; - . . Yontent refers to the sequence of Kraus operd®jrased to

1es doeg not arise from SL.JCh considerations. implement the CP map, although other interpretations are
In this work we examine the consequence of measuresqqinie This can be considered as the equivalent of Schu-

ments of the evolution law and suggest that the above re5,,:hers nojseless coding theorem for operations. A differ-

ithin th ional f K of hani Bt interpretation of compression and storage of unitaries
within the conventional framework of quantum mechanics, ;¢ given in Ref[4] where for a specific known ensemble of

and quantum information. We find that features such as SLbhas:e gates it was shown how to store them efficiently. This

can be thought of as storage of a known ensemble of evolu-

tions [5]. Here, our compression rate is ensemble indepen-
*Electronic address: jono@damtp.cam.ac.uk dent and generic, akin to compression of a source emitting
"Electronic address: reznik@post.tau.ac.il quantum states.
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We invoke a no-go theore,6] for programmable quan- that assigns to each unitaty, a distinct real eigenvalug,,
tum gates, and storage of unitaries to show that one cannthirough the eigenvalue equation,
have a compressed evolution act on an unknown state, and
still preserve its informational content. This is true even if TA(t2; 1)U = AU 3)

one only demands approximate fidelity. This is because there The operatoA(t,,t;) describes temporal correlations. It is

are an infinite number of ways one can implement a givenyonstructed as a linear combination of bilinear products of

CP map(there.are in a sense, an infinite numbeewblution operators at each of the two instan¢gandt,. The symbol
ensemblegswhich are unknowp We show however, a ge- T. denotes temporal ordering. For instance Afty;t,)

Eeric scheme to probabilistically act the evolution on an UN<= gA(t,)B(t,) + yC(t,)D(t;) then  T:A(ty:t)U,(t,—ty)
nown state. . _ _ =BAU_B+yCU,D. Since\,=BAU,BU!+yCU,DU! is a
We the_n gener_ahze sup_er-de_nse (_:od_mg to t_he Send'ng_%%gnstant, t)rllcé operatdx(tz,ts dﬂescribesacc?r?stant 0? motion
quantum information contained in unitaries. This has certalr\1Nith respect to each of the basis elements. The eigenvalues
cryptographic implementations which we briefly explore. : '
. X : are thus state independent.

Finally, we turn to the notion of entanglement of a unitary. (2) Probability law and measurementEhe outcome of a
A number of authors have used the formal correspondencl%easurerTlent oA(t,,t,) is one of eigenvaluea, with a
between states and operations to investigate the entang”rbqobability given byZ’ ! “«
capabilities of unitary operations], (e.g., Refs[4,8-11).
The present framework suggests the notionirgéraction Prob(\,) =|C,J%. (4)
entanglementf a unitary acting on systems, and we show
that this entanglement can be concentrated in a manner (3) Reduction of U (collapseA measurement with an
analogous to the concentration of states into pure entangl@utcomel,, leads to a collapsgeffectively or truly depend-
ment. We conclude with some remarks on the interpretationdNd to the readers preferred interpretajiaf the superposi-
issues involved with the measurement of evolutions. tion (2) according to

Uty = t)|h) — Ul (5

_ ) _ ) We interpret(1)—«(3) as specifying criteria for a measure-
Let us first provide an operational meaning to the meament that detects which particular transformatidp in the
surement of unitaries. We consider a system with arsyperposition(2) has been realized on the system with
N-dimensional Hilbert space whose state evolves in time aCpriori probability ProkU,)=|C,J>.
cording to It should be emphasized thét)~(3) are independent of
[i(t)) — [g(t)) = Uty = ty)|g(ty)). (1)  theinitial state of the system and hence can be interpreted as
a measurement of a term in the superposit®n The initial
It is know that for anyN there exists a basis df° or-  state of the system is here arbitrary, hence includes the case
thogonal unitary operatorfl2], where orthogonality is de- of a unitary actinglocally) on a part of an entangled state.
fined with respect to the trace inner produttvV=trU'V.  As a consequence, the present measurement of the unitary
Thus the unitary time evolution operator can be decomposettansformationdoes not reducéhe entanglement of the sys-
with respect to an orthogonal bagis, tem.
Although here we will show an operational correspon-
u=S cu @ dence betvx_/een th<_a measurement of states and the measure-
- o et ment of unitaries, it must be emphasized that there are im-
portant differences. One interesting result is that one can
whereU ,-Uz=Ng,; and the complex amplitudes are given perfectly distinguish between two unitaries which are not
by C,=(1/N)U,-U(t,-t,). The converse of the above state- orthogonal[14] if one can act each unitary many times on a
ment is not true. A superposition of unitary operators withstate. In contrast, for any finite number of copies of two
arbitrary amplitudes generally does not give rise to a unitarynonorthogonal states, there is a probability of error.
The operators space contains nonunitary operators which can We now proceed to prove the above three statements. To
be also spanned by a unitary basis. begin with, we consider some simple properties of a general
Can the formal expansiof2) be given a general physical given basis of orthogonal unitary operatéts,} of Eq. (2).
interpretation? It has been shown that under certain condiclearly the sefl,U;;i=1, ... d—-1} whereU/ =U{U; is also
tions, a superposition of unitary evolutions that gives rise toorthogonal under partial trace. Sintd are traceless or-
another unitary, can be produced by post-selecting an ancithogonal operator&hey are orthogonal to)| all sets of uni-
lary system that interacts weakly with our systgifi]. Inthe  tary orthogonal basis can be expressed as a product of an
present work we propose another approach. We shall showarbitrary fixed unitaryU, with some traceless unitary or-
that for any chosen basis, we can measure which unitarghogonal basis.
evolutionU,, the system evolved under. The outcome of such We explicitly consider theN=2 case—generalizing our
a measurement has probability Pfol)=|C,%2 More for-  results to higher dimensional Hilbert spag@scluding the
mally, we have the following. infinite dimensional cagas straightforward and described in
(1) Observables and eigenvalud® each orthogonal ba- the Appendix. The general structure of the basis is given to
sis of unitary operators, we can find an observak(e,t,) be

II. APROBABILISTIC INTERPRETATION OF UNITARIES
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= Do © 23 a0 MO N DU (19

whereo,=(1,0;) with i=x,y,z the Pauli matrices.
Thr(]a obts),erVﬁbIes corresponding to the measuremdudt, of Finally, using the_n0tati0¢a>:{Tsz,Tzlz,lziz,lsz} where
can then be chosen as 15, 1,=(/0)£]|1))/y2, we can perform a projective measure-

A(ty,ty) =[UgoiUdl [ai]:. . (7  ment in thela) basis on the ancilla. The final total state of the
ne 0T, system and the two spins and the effect of the measurement
Replacing inta(3), can be expressed as
3
T:A(to, 1)U, = [UgoiUIU [ ai] = \iuU,, 8)
(20 = UorolUeloi = ( 2 ColayUo| ) — Uy ), (15)
a=0

and using(6), we get

A =[UoUTU Ut 9 thus demonstrating the_z notion of collapg8gto ap, & particu-_
o= [WoiUolUaoiUs © lar . One could also interpret the above as instead being a
collapse induced by the interaction.

=UgoiUjUoo,010,Uf (10) We have used here the standard probability interpretation
with respect to a measurement of the final ancillary blasis
=+1. (11)  Since the probability to find, is given by|C, [ this dem-

onstrateq3) and (4) for the present two-dimensional case.
Since we need to resolve between four basis elements, it ©ne can verify that the above procedure effectively moves
sufficient to consider a pair of operators, s&yt,;t;) with  the information contained in the state onto the ancilla, while
i=z,X. having the unitary act on half a maximally entangled state.

Next demonstrat€2) by explicit construction of a mea- The information of the stat@vith the action of the unitanyis
surement. One possibility is to have the unitary act on half othen transferred back from the ancilla to the original system.
a maximally entangled state. Each orthogonal unitary in aowever, the physical particle that is the system is not actu-
basis of unitaries would then produce an orthogonal maxially swapped, allowing one to use such a measurement with-
mally entangled state and one could then perform a measureut changing the particular system. For example, one could
ment on the state to determine which unitary acted. This hasse this to detect the noise in an ion-trap quantum computer
the disadvantage that one cannot use this method for an everile still preserving the information of the state and the
lution acting on a particular physical system in an unknownsetup of the experiment. The measurement procedure gives a
state. We therefore propose to observe the opers(iprt;) generic way to transfer the state of a system onto another
by coupling twice with the system in a manner which pre-system without performing a physical swap.
serves the state. A method for measuring sums of operators An important point is that the measurement of which uni-
as o(t,) + o(t;) has been suggestétl5] and used to demon- tary is independent of the state that the unitary acts on. This
strate teleportatiofil6]. We employ a similar method using a allows one to distinguish between unitaries which when act-
pair of ancillary two-level particles taken initially in the state ing on certain initial states would not lead to orthogonal final
(|0)+]|1)(0)+[1))/2. We assume a vanishing free Hamil- States. _ _ _ _
tonian for the ancillary particles. _ To exempllfy_our .result, c;onS|der the .evolutlon of a spin
The ancilla and the system then interact twice, first at " @ magnetic field with U=exp(-iBot)=codBY)1

=t, and then at=t,, and then the ancilla is measured. To _| SiN(BYo. If we select to measure in the basis
specify the interaction between the system and ancilla wéY,Yox,Uoy,Uay),  we will find ProdU)=1 and

define the controlled Pauli Prol{Ug;)=0. Therefore, in this case we verified with cer-
tainty that the evolution isJ(t) without causing any distur-
V, = |0X0| + |1)1]o7, (120  bance. On the other hand, if we choose to measure in the

_ basis(1,0;), we will reduce the evolution to|¥) with prob-
whereg; acts on the system, and similarly we denote\hy  ability cog(Bt), or to o) with probability sirf(Bt). More
the same interaction between the system and the second agenerally, in ad-dimensional space, we can distinguish with
cilla. We further assume that the interactions are nearly imeertainty betweem? orthogonal unitary operators.
pulsive: the durationAt required to app|yVivi is much What is more, we are able to distinguish between unitaries
shorter thar[z—t:l_, hence the correction due to the free evo-Which do not themselves commute. This is because each el-

lution can be neglected while we apply the interactions. ~ e€ment of the basis gives orthogonal outcomes on maximally

We now apply the following sequence: entangled states. There is however an uncertainty principle
between different possible measurements of which unitary
(UgVVLUDU(t = 1) (V, V). (13)  9given by the uncertainty between two two-time operators

A(ty,t;) andA’(t,,t;). This uncertainty can be compactly ex-
The measurement interaction acts twicetat; and t=t,, pressed as an entropic relatiphi7,1§. Consider two mea-
while at intermediate times the system evolves freely. Thesurements of a bas{§),,} and{U,,}, which can be described
resulting total state becomes in terms of the orthogonal traceless $etU;} and a unitary
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U and U, for the & and o’ basis, respectiygly. Then, for all p)=> MipMiT- (18)
outcomes of measurements with probabilityand p,, one i
finds the uncertainty relation
One usually thinks of the Kraus representation as being a
H,+H, =-2InTrHUIUY), (16) ~ formal representation of a CP map. Here, the aim is to find a
physical and informational interpretation. The operator-sum
tdecomposition is not unique, but it can be shawr24] that

with H, and H, the Shannon entropy of the measuremen -
y ‘o by all other decompositions have Kraus operafdyselated by

outcomes, i.e.H,=-p, log p,. The relationship has the ap- . . -
peal that it depends only on the chosen basis of unitaries, arfl unitary transformatiorN;=U;M;. The operator-sum de-

not on the particular unitary being measured or the state thé;[omposmpn may 'therefore 'be thogght of as being analogous
to a density matrix. In particular, it can be sho\iz8] that

the unitary acts on. It can be derived by noting that the mea;

surement procedure for two different basis is identical untilfor a given statep, there exists a diagonal representation,

t, when one essentially makes two different projective mea—SUCh that

surements in some maximally entangled basis given by | t_
QU " or I®U, ¢ Then, from[19], one has the uncer- trM,pM, =0 for u# v. (19
tainty relation If p is taken to be the maximally entangled state with the
Kraus operators acting on half of it, then one sees that the
H,+H, =-2Inc (17) M, are orthogonal under the trace inner product as with the

orthogonal unitariegor the nonunitary sed,) considered in

with c=max, |(¢"1 ® Ul [l® U, ¢*)|. The relationship Eq. the preceding section. One therefore has that
(16) then follows. _

Finally, we comment that the above measurement proce- ) =M, 4" (20)
dure can be extended to nonunitary orthogonal operators, ) _
which may be also used as a basis. Such a nonunitary badie orthogonal statqsinnormalizegl The normalized states
can be obtained by the transformatiép== K ,,U,, where ~ We call[y,). After the CP map has acted on half tit&, we
K is aN?x N2 dimensional unitary matrix. The operatokg ~ &re left with a density matrix given by
are generally not unitary, but are orthogonal with respect to
the trace inner product. Thus, we can distinguish between the W= p,li)h,. (21

elementsA, using the procedure used above. . . . .
" 9 P One way to think of how the CP map arises is to consider

a unitary which acts not only op, but also on the system
1. AN INFORMATION THEORETIC INTERPRETATION plus an ancilld0c) (so-called Stinespring dilatignnamely,

OF EVOLUTION
E(p) =trc U(p|Oc)Og] . (22)

Having shown that the correspondence between unitaries
and states has an operational meaning in terms of probabilityfter considering such a global unitary, one can take the
amplitudes, we now turn to the question of whether there isincilla to be with a third partywho we will call Charlig,
an information theoretic interpretation to unitary operationswho is considered to be the sourCeof the CP map.
An informational interpretation of quantum states was given We then define thentropy of a CP mags
by Schumacher’s noiseless coding theorg2] (cf. Refs.
[21,22). We will now see that a similar interpretation can be Se=-, P, In(p,) (23
given to unitary operations. Instead of considering a pure
unitary, we consider an arbitrary completely positi@P)  and show that it gives the rate at which one can noiselessly
map&(p). We will see that one can define an entropy for thecompress the informational content of the CP map. By infor-
CP map which only depends on the map, and not on how it isnation, we mean something analogous to the informational
implemented, nor on what state it acts, and that this has atontent of a state under compression. In the case of states,
interpretation of the rate at which the informational contentshe compression is done without knowing the ensemble, and
of the map can be compressed. It is also equal to the maxafter decompression, one can verify that one faithfully ob-
mum classical information which the map can transfer. Thaained some series of states by having the source read out
entropy production that a CP map produces on particulaeach state that was sent. One then performs a measurement
states was considered in RE23]. We will further prove two  on the decompressed states to verify fidelity.
theorems showing that while the information can be stored Here, in analogy with ensembles of states, we have
and compressed, it is impossible to later act it on an unehoices of the Kraus representatidbfi. We can therefore
known state, or even a known state chosen after the informarerify that all the information of the CP map has been faith-
tion has been stored. fully stored under the following test: Charlie performs a

We start by showing that the interpretation of unitariesmeasurement on the ancilla in an arbitrary basis. We will see
described in the preceding section, can be extended to oth#rat choosing the basis is the equivalent of choosing some
positive operators. Namely, we can expand an arbitrary CKraus representatioflike choosing the ensembleCharlie’s
map in terms of Kraus operatohd; [3], result is in one to one correspondence with a particMgr
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and we can verify that indeed thig; acted on our state. We unknown set of stateg, generating the stat¥, call the error

thus have a correspondence between the informational comate of a given protocot= (M| /)M,|)Ms|ih)- - -|2.

tent of states, and that of operations. Theorem 1:Given X,X' drawn from any operator-sum
To see this we consider a measurement on the arCilln ~ decomposition of the CP maf{-), and any encoding\(£(+))

the basigic) after the unitaryJ of Eq. (22) has acted on the which maps sequence$, X’ to statesr, 7., and decoding

ancilla andy*. This then selects thil; via algorithm B(A(£(+),#) which maps 7, to |¥) close to
o . MMyl Ms| ). .. with error ratee. Then if |¢) is an ar-
Mily*) = iclU]¢") ® |0c). (24)  pitrary unknown state chosen after encoding|st|

. _ <0(ye)/D(X,X’).
Therefore if given the value af from the source, one can  \ye can invoke a no-go theorem for programmable unitary
verllfy 'ghatMi did indeed act. Furthermore,_fqr an_ensemblegateS[G]’ extended to the approximate case in R&f. We
which is made up of orthogona;, we can distinguish them oter the reader to Ref5] for the full proof of the used

without being given the value af Note that the particular result, and just give the no-go theorem in the exact case,

form of theM; is dependent on the state acted upon, althoughyging the fact that the encoding must be unitary. The decod-

the CP map itself is state independent. ing takes as input, a sta$)®", and the encoding of the map

That S qubits are necessary and sufficient to store th'ﬁ'ealizationrx. Let us first taker, to be a pure statg) (our

information is straightforward. The rate can be achieved forproof will extend to any mixed state, by the linearity of

Iargen! simply by having the +source .perform each “”itafY Onquantum mechanigsThe decoding then takes this input and
a maximally entangled stat”, creating the density matrix produces the sequencE)=M|¢)M.|y)Ms|y)--- and some
given by ancilla|y,). The ancilla cannot depend gnfor coherence to
be preserved. We can imagine the encoding being performed
0 =2 Pl Xl (25  on another sequenc¥’, encoded in|x’), and producing a
sequencéy’)=M;|y)M|$)M3y)---, and ancillax;). Then,
From Shannon’s noiseless coding theorem, the state witkince the decoding must be unitary it must preserve the inner
density matrixp can be compressed at a rateSpft € with € product of any two inputs,
as small as desired in the limit of large The encoding
;Ibec?\tg preserves the informational content as described XX = Oede XYY, (26)

That this rate is optimal, can be seen from the fact that the ] )
encoding must work for all ensembles, and in particular we>INce neithekx|x’) nor (x| xx) can depend ow it follows
could choose the ensemble to be the set of orthogonal opertiat eitherx|x")=(x,| x,»)=0 or(Y|Y’) cannot depend oi.
tors M,,. A better compression rate would then imply a vio- The latter can only occur X=X', therefore, if the encoding/
lation of the Holevo bound. decoding is to work for different possible inputs we require

A particular example of the above scheme are CP map@<|x’):0. That is, an orthogonal state must be chosen for
which correspond to unitaries applied probabilistically. Weeach possible sequence, and the size of the encoded state
imagine that a sequence of unitaries are performed by must then be as large as the number of possible sequences.
sourceC, and that while we do not know what unitaries are Since there are an arbitrarily large number of possible en-
being performed, nor from what ensemble the unitaries areembles which implement a given CP map, it follows that the
being drawn from, we do know the CP map that the sourceize of the encoded state must be infinite. In essence, the size
performs. Again, this is in analogy with knowing the density of the program grows with the size of the ensemble.
matrix of a source which emits states. That is, one images a It is not clear if one can do better if the state is known to
sequence of unitaries performed on the state, where the urtihke decoder.
taries are chosen from sommknownensemble/={p;,U;} It is perhaps amusing that there is an infinite discontinuity
(the U; need not be orthogonaland we wish to compress a which occurs if allM; are identical and perfect fidelity is
particular sequenck of n draws from this ensemble. All we required. One can imagine a CP map which can be decom-
are given is a Kraus representation of the CP map. Using thposed into two orthogonal unitariés;, and U, and that one
method above, the sequence Wf can be compressed at a is applied with probability 1, and the other with probabil-
rate S, and one can indeed verify whether any particularity e. There is an infinite discontinuity in that the number of
sequence& of unitaries was performed. possible Kraus representations goes from infinity to one. The

One might hope that the information concerning the sesame discontinuity exists for ensembles of density matrices.
guence of positive operators could be encoded and decodddhere is therefore potentially something special about pure
in such a way that a recipient can act the map on an unknowstates and pure unitaries. This discontinuity only exists if one
state given after the encoding. We will see that this is imposdemands perfect fidelity of the decoding, therefore it is un-
sible for an arbitrary ensemble even if only approximate fi-clear what the interpretation of this observation is. The above
delity is demanded. has the flavor of a phase transiti¢ef. Refs.[25,26).

This result is easily extended to the case of Kraus opera- One can now ask whether one can perhaps act the com-
tors. Consider an unknown sequence of Kraus operafors pressed evolution on an unknown state probabilistically. In-
=M;M,M3:--M,, and similarly X’, and a distance measure deed, for the case of a stored phase gate of the fd(m
D(X,X")=tr(|X=X'|). A given protocol aims to ack on an  =expliao,) one can act the stored gate on an unknown state
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with probability 1/2[5]. We now generalize this to arbitrary randomness, Alice could send known quantum states using

unitaries and Kraus operators. only half as many qubits.
Consider an unknown staig and evolutionM; stored in As with super-dense coding, the sending of the arbitrary
statey;. We then perform the unitary unitary is cryptographically secure, in that an eavesdropper,
located between Alice and Bob, obtains no information about
V=X PM,, (27)  which unitary was appliedneither can Alice learn which
m unitary was applied, as long as Bob holds the other half of

whereP,, are projectors onto the orthogonal stageswhich  the used singlgt One may therefore regard this as a one way
are eigenkets of defined via Eq(25). The stored evolution ~Private quantum channgk8,29 which uses a resource of

can be expanded in terms of the orthogonal set of Krau§ne ebit per 2 qubits of sent information rather than 2 cbits
operators as for each qubiialthough see the key-recycling results of Ref.

[30,31)), or 2 ebits[31] per qubit.
Mi:ECi,u.M/.L' (28)

We then caus&/ to act on the stored evolution and the un-
known state

V. ENTANGLEMENT AND CONCENTRATION
OF UNITARIES

Does the notion of entanglement extend to the case of
VIg) @ [4) = 2 €uth, ® M), (29 evolutions? Consider a unitary interaction that acts on a pair
in gf systems. Clearly, the combined evolution operator can be
expanded in terms of the unitary basis operators of each sys-
tem in the general form

We then measure the state which was storing the unitary,
basic complementary tg,. For example, we can measure
using projectors ontg,,, with (4, |,)=+1/\d. Then, with
probability 1/d we will have succeeded in performing the Ut =S¢, Ul g vih, (30)
correct Kraus operator. mrmm v
where U and VS}” are the local orthogonal unitary basis.
Likewise the familiar entanglement bipartite correlations are
IV. SUPER-DENSE CODING OF UNITARIES recovered for interactions.
] ) ) ) ) In the sense of a passive transformation we can re-express
. The prgcedmg sect!on therefore gives an informationajj,o general state by performing the transformatiap
interpretation of evolutions. In fact, one can regard the en—ZEaKlmua and B,=3,Y,.V,, such thatkCY=D is diago-

tropy of Eq.(23) as representing the maximum amount of pajizeqd in the new orthogonal basis with eigenvaldes
information that the evolution can transfer from an environ-yence a Schmidt form can be written also for unitary inter-

ment or source to a state. This leads to a natural generalizagtions
tion of super-dense coding where the information that is con-
veyed is not classical bits, but rather, pure quantum gt =>d A" BN (32)
information. e

One can imagine that two parti¢alice and Bol) share a The operatorsﬂ\(') andB" in the above decomposition are
maximally entangled state, and that Alice has access to generally not unitary, however they maintain orthogonality
source C of random unitaries which acts on her half of theunder the trace inner product. Hence, we can apply the same
singlet. Alternatively, Alice might apply unitaries conditional procedure, described in Sec. Il, to measure which operator
on quantum states, or might apply the unitaries herself achas acted on each side of the bipartite system. The probabil-
cording to some classical probability distribution. The actionity to find a certain operatoA, (or B, if the measurement
of the unitaries will produce a sequence of maximally en-takes place at side)lls then given byDM|2. As consequence
tangled states shared between Alice and Bob. After Aliceof (3) a measurement of say system I, will lead to a collapse
sends her half of the singlet to Bob, he will obtain all the of the sum to a single term in analogy with pure state en-
guantum information about the unitary. Since the basis ofanglement of states. There is then a one-to-one correlation
qubit unitaries is 2larger than the basis for qubit states, thisbetween the results of the measurement of which operator
can therefore be viewed as a “quantum” version of the clashas acted on system | and Il.
sical communication sent in super-dense coding. In the case We can now quantify the entanglement of the interaction
of super-dense coding, Alice chooses from four orthogonaby computing the entropy of the probabilities,
unitaries and applies them to her half singlet and sends:X|d,|?log|d, |2 in this diagonal basis. To justify this choice
Here, one allows arbitrary superpositions of the orthogonalve demonstrate a concentration procedure rfoidentical
unitaries to be applied. What is more, the information that ismonmaximal bipartite interactions. We emphasize that we
sent can be sent blindly. Alice need not know which unitariesnow consider a concentration process that is independent of
are being applied by the source C. If she first tried to knowthe nature of the statg(l,Il), on which the unitaryu®"")
which unitaries were being applied by the source, she wouldcts.
of course, destroy the quantum state. Suppose that we operatetimes the same bipartite inter-

An alternative generalization of super-dense coding haaction
been independently proposed in R§27]. There, it was
shown that in large dimensions, using singlets and shared [alV @ 1"+ oy’ @ af]°". (32)
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We would like now to concentrate this “nonmaximal in- particularly chosen state. Clearly the two notions differ. In-
teraction” to a sum of terms with equal coefficients. Recall-teraction entanglement does not depend on the nature of the
ing that in the state concentration scheme one employs iaitial state, while the entanglement capability clearly does.
collective measurement of the operafj{=3,0%, we shall  Furthermore, in general the numerical value of entanglement
now consider a measurement of the temporal collective coreapability is larger than the interaction entanglement because
relation AJ(ZI)(tZ,tl):J(zl)(tz)—J(Zl)(tl) (more generally, when ©One optimizes the entanglement gain over the initial states. In
we have a large number of terms one has to measure mofg&ntrast, the interaction entanglement, as well as the CP map
temporal correlations The equationT:J(t,,t,)U;=\U;, has  €ntropy, are independent of the entanglement content of the
solutions with eigenvaluea=(-n,-n+2,... n). The rel- State.
evant eigenoperators correspondingJohave the structure
of a sum of terms, where each of t_he terms is given by VI. CONCLUSION
products of unit operators and Pauli operators. The total
number of Pauli operators is identical in all terms and deter- The focus of this paper has been on giving an operational
mined by the eigenvalua. The coefficients of the terms interpretation to the formal correspondence between opera-
need not be identical henttabove is generally degenerate. tors and states, and enlarging our view of the probabilistic
Nevertheless, in our particular case, a straightforward calcunterpretation of quantum mechanics. We have seen that one
lation shows that a measurement of the operatd\t,,t;),  can treat operations in a similar manner as one treats states.
that may be performed on subsystem | or II, collag@to By making a single measurement one is able to say which

the operator operation acted on a state. The probability of the result of
" " ey an this measurement is given by a simple extension of the usual
Cu=[(7" o) - oy YA o ) + oo . probability laws of quantum mechanics, and is independent

(33)  of the state that gets acted on. The results follow from the

. . ordinary laws of quantum mechanics, and yield interesting
Notice that the terms in the square brackets above are noerpretational issues. While the probabilistic interpretation
all equally weighted, and their number is determined by theyq collapse can be formulated in analogy to that of quantum
measurement outcome. The probabll(llty tokcollapse INto & Palsates, it remains to be seen to what extent can we truly
ticular value of operator is given by*g*"". Therefore, in interpret the expansion &f as a sum over unitary evolutions
complete analogy to the case of pure state concentration, thes 5 quantum superposition of evolutions. One could object
expected number of equall;ng)mghted termsCp, peaks in - for jnstance to this interpretation by arguing that while the
the limit of largen around 2=%, whereS(d,) is the Shan-  {ina| gutcome of the measurement is indeed a collapse to a
non entropy. Notice that in general the operalyy is not  gjngje effective evolutionJ,,, the evolution of the system in
unitary. Nevertheless, its entangling capability power ispenyveen the two intervention timess, andt,, is in fact not
equivalent ton controlled-not interactions: it can convert  yascribed by the resulting,,. Thus we have not collapsed to
nonentangled pairs into a block wittf2equally weighted 5 single unitary but only to an effectively equivalent unitary.
terms which is maximally entangled. However, unlike thegych questions do not bother us for the case of a single time
case of state concentratid@,, cannot be further factored by measurement, and it is not clear how to interpret such ques-
means of local operations to a product of bipartite maximallytions for the two-time measurements considered here. For
entangled unitaries. _ S _ clarity we use the phrase “which unitary acted” rather than

The above result suggests a notion of bipaititeraction  «ynich path the state took.”

entanglements,, which is a straightforward extension of |t g50 remains to be studied in what respects the proba-

ordinary entanglement, bilistic interpretation of evolutions differs from the conven-
S, = Y Id, 2 In[d, 2 (34) tional interpretation. One such important difference is that
B e m while nonorthogonal states cannot be distinguished with cer-

tainty, nonorthogonal evolutions can given sufficiently many

This definition is in complete harmony with the entropy de-instances of the unitary. Understanding how this can be in-
fined previously for a CP map. Therefore, given a bipartitecorporated in a rigorous probabilistic formalism is a poten-
unitary interaction, the entanglement entropy of the interactially rich area of research. It has also been advocgg8 B4
tion corresponds locally to the entanglement of the locallythat unitaries should have an interpretation similar to states
generated CP map. This can be seen by noticing that thsince the unitary can be controlled by a quantum statg.,
operatorsA, (B,,) in the Schmidt decompositiof81) are in  a cnot where the control bit is half a singletn the present
fact then the same Kraus operators that appear in the sumork, the probabilistic nature of unitaries arises for macro-
representation of the CP map which act on systdihh)l scopic sources of unitaries, thus it may be interesting to un-

The analog of a maximal entangled state is in our caselerstand the interplay between the two effects and their in-
given by (1/V2)(I®1+ioy® ay), which is equivalent to a terpretations.

controlled-not(up to additional local rotationsWe can now The information theoretic nature of evolutions has also
compare the proposed notion of interaction-entanglemertieen explored, and we have given an information theoretic
with that of entanglement capability of an interactif82]. interpretation to CP maps, using the idea of compression of

The latter is defined by maximizing the amount of state-their informational contents. For arbitrary realizations of a
entanglement that an interaction produces by acting on given CP map, we found that it was possible to compress the
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map, and act it probabilistically on an unknown system. It Ag(tyty) = (UOXUO)tZ(X)t1+ H.c., (A5)
would be interesting to explore whether one could act it on a
known state given after compression. A generalization of su-
perdense coding was also introduced. With regard to our en-
tanglement concentration scheme, we have not yet touched Ag(tyity) = (UgZUp), (2, + H.c., (AB)

on possible analogies for dilution for the case of interaction
entanglement. This leaves open the question whether the pro-

posed measure of interaction entanglement is a reversible ) )
quantity. As we will shortly see Ax and A; ascribe the value of the

first and second indexes of a single element of the unitary
basisU,,,.
To perform the measurement we employ now a pair of

. o _ N-level ancillary systems in the initial stala)>|8). The
We are grateful to Yakir Aharanov, Ignacio Cirac, Daniel jyteraction operator can be expressed as

Oi, Roberta Rodriquez, and Lev Vaidman for interesting dis-
cussions. J.O. acknowledges the support of the Lady Davis
Trust, and ISF Grant No. 129/00-1 as well as funding by
project PROSECCQIST-2001-3922Y of the IST-FET pro-
gram of the EC and a grant from the Cambridge-MIT Insti-
tute. B.R. acknowledges the support of ISF Grant No. 62/
01-1. This research was conducted during the Banasque
session on Quantum Information and Communication, and -
we thank the town and the organizers for their hospitality. and similarly we defin&/y. The sequence of interactiontat
free evolution, and interaction &t then reads
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N-1

Vo= > |a)a|Z¢ (A7)
a=0

APPENDIX

In this appendix we demonstrate our probabilistic inter-
pretation and measurement scheme for the general
d-dimensional case. Let us denote the orthogonal basis as
U,, Where the two indices take the valugsv=0, ... d-1.
Then

V(2 Cpaur) ViV, (A8)

where for the simplicity of presentation we have dropped the
Ug factor. Acting on the total state we obtain
U, = Uoo',uy,

nv

(A1)

. @ a T = B B T
whereo,, ared? traceless orthogonal unitary operators. We Ey Cpuv % X00,X 0, “>% 2502 "uv|'8>]‘7w| -
will consider first the simple case where .

(A9)
0., = (2DHX)", (A2)
The main point is that the operatot$®c, X% ,» and
where the operators5] ZPq,,ZP¢! , are constants of motion. Using ‘the commutation
relation of X andZ we finally get
N-1
z=2 JljXil (A3)
j=0
2 Cu| 2 M@ 2 1P18) |0,
and - “ p
=2 C, |l b)oulw), (A10)
N-1 mv
X= 2 [(j + DmodN) | (A4)

j=0
where the ancilla stateEM and ¢, are orthogonal, hence a

are operators satisfyingN=XN=1 and ZX=¢XZ, where ¢
=exp2#i/N). We notice that foN=2, Z— o,, and X— o

measurement att, will indeed collapse the sum to a single
term with a probability|C,,[%, and leave only the unitary

and regain our previous construction using Pauli operatorsr,,.

ThusZ and X play the role of generalized phase flip and bit

flip operators.
The extension of the eigenoperators is then given by

More generally, it is known that fad= 3 there are differ-
ent inequivalent unitary basid2]. However there exists a
one-to-one correspondence between the unitary basis and the
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basis of maximally entangled statg&6]. Since for the latter _

we can always identify an observable which distinguishes Too= f dx &Po[x)(x]. (A12)
between the basis elements, a corresponding observable can

be constructed for an arbitrary unitary basis. The general set of orthogonal unitary operators is then

We finally note, that the generalization of the particularU, , =Uq(X,p)oy ., WhereX, and po are continuous real
construction above to the case of a continuous Hilbert spacgumbers,
is straightforward. In this CaS@MV%UXOPOZTXOTpO, where

Cropo = J dx €Po(x + Xo|U[x).. (A13)
The amplitude of a basis element for a genétdias then a
Ty, :J dxX{x +xoX(x], (A11)  form similar to the Wigner distribution.
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