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Abstract

This paper looks into how learning behavior changes with the complexity

of the inference problem and the individual’s cognitive ability, as I compare

the optimal learning behavior with bounded memory in small and big worlds.

A learning problem is a small world if the state space is much smaller than the

size of the bounded memory and is a big world otherwise. I show that first, op-

timal learning behavior is almost Bayesian in small worlds but is significantly

different from Bayesian in big worlds. Second, ignorant learning behaviors,

e.g., availability heuristic, correlation neglect, persistent over-confident, are

never optimal in small worlds but could be optimal in big worlds. Third, dif-

ferent individuals are bound to agree in small worlds but could disagree and

even be bound to disagree in big worlds. These results suggest that the com-

plexity of a learning problem, relative to the cognitive ability of individuals,

could explain a wide range of abnormalities in learning behavior.
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1 Introduction

Many experimental and empirical studies have documented different behaviors of

belief formation that systematically differ from the Bayesian model,1 e.g., the use

of heuristics (Kahneman et al. (1982)), correlation neglect (Enke and Zimmermann

(2019)), persistent over-confidence (Hoffman and Burks (2017)), inattentive learning

(Graeber (2019)), etc. Although different mechanisms have been proposed for dif-

ferent phenomena, our understanding of these learning behaviors is still inadequate.

In particular, few attempts explain how the prominence of these “abnormalities”

changes across different situations, and even fewer propose a more unified mech-

anism to explain different types of “abnormalities”. Informally, these departures

from the Bayesian model are often attributed to the complexity of employing the

Bayes rule. However, to the best of my knowledge, no study formally analyzes how

the complexity of an inference problem affects individuals’ learning behaviors. Are

“abnormalities” less prominent in less complicated problems? How do learning be-

haviors change with the complexity of the inference problems? This paper aims to

answer these questions and explain different “abnormal” learning behaviors in light

of complexity.

Every day we form beliefs over many uncertainties to guide our decision making,

from predicting the weather and deciding whether to bring an umbrella outdoor,

where to get chocolate in a particular supermarket, to estimating and preparing for

the impact of Brexit. Given our limited cognitive ability, intuitively the complexity

of the inference problem would affect the way we form beliefs. After several trips to

the same supermarket, we would be fairly sure about where to look for chocolate;

but even after collecting numerous data about the stock market, we make mistakes

in our investment decisions. We are also more likely to disagree on complicated

problems, e.g., the impact of Brexit or global warming, but agree on simpler prob-

lems, whether to bring an umbrella outdoor. Similarly, given an inference problem,

different individuals with different levels of cognitive ability would perceive the level

of complexity differently, learn differently, and could disagree with each other even

after receiving the same and many pieces of information.

In this paper, I analyze a simple model to compare the optimal learning behavior

of an individual in small and big world problems.2 The former refers to situations

where the complexity of the inference problem is low relative to the cognitive ability

1There are plenty of examples, see for example the seminal work of Kahneman et al. (1982),
Kahneman (2011) and the section 3 of the review article Rabin (1998).

2The terms “small worlds” and “big worlds” are inspired by the seminal work of Savage (1972).
Differently, in Savage (1972) (and also the related study of Mailath and Samuelson (2020)), big
worlds refer to complicated inference problems where it is difficult for individuals to form a prior
belief on states and signal structures, or even to construct the state space. In contrast, this
paper assumes individuals have clear (but perhaps subjective) ideas on the state space and signal
structures but defines big worlds based on the size of the state space relative to the cognitive ability
of individuals.
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Small Worlds
(small N

M
)

Big Worlds
(big N

M
)

Is learning close to Bayesian? Yes No

Is ignorance in learning “optimal”? No Could be

Is disagreement persistent? No Could be

Table 1: Differences in optimal learning in small/big worlds

of the individual, and the latter refers to situations where the complexity of the

inference problem is high relative to the individuals’ cognitive ability.3 In other

words, I analyze how the relative complexity affects learning behavior.

Consider an individual who tries to learn the true state of the world from a finite

state space Ω = {1, 2, · · · , N}. In each period t = 1, · · · ,∞, before receiving a

signal st ∈ S, he takes an action at ∈ A = Ω which he aims to match with the true

state. To model limited cognitive ability, I assume his belief is confined to a M sized

automaton that captures bounded memory, as in the seminal work of Hellman and

Cover (1970).4 A belief updating mechanism with a M sized automaton comprises

a (potentially stochastic) transition rule5 T : M × S → 4M and a (potentially

stochastic) decision rule d : M → 4A . That is, at each period t, he starts in a

memory state mt−1 ∈ {1, · · · ,M}, receives a signal st, then transits to memory state

a mt according to T (mt, st) and takes an action at according to d(mt).

In contrast to Bayesian, the individual with bounded memory has a much coarser

idea of the likelihood of different states of the world, and the coarseness decreases in

M . Thus, N measures the absolute complexity/size of the world, and M measures

the cognitive ability of the individual. I define small worlds as cases whereN/M → 0,

or in general when N/M is very small.6 In contrast, big worlds refer to cases when

N/M is bounded below from some strictly positive real number. As previously

mentioned, whether a problem is a small or big world problem depends on the

relative size of the world with respect to the individual’s cognitive ability.

I compare the characteristics of the optimal updating mechanisms (T ∗, d∗) that

maximizes the asymptotic probability that the individual matches his actions with

the true state, in small and big worlds. I show three differences in learning behavior,

which are summarized in table 1. The first comparison is about whether asymptotic

learning is close to Bayesian in small and big worlds. I show that in small worlds,

3Intuitively, if individuals have super cognitive/memory ability, any complicated problem would
look like a small problem.

4See Compte and Postlewaite (2012), Wilson (2014), Monte and Said (2014) and Basu and
Chatterjee (2015) in the Economic literature that model bounded memory with finite automaton.

5The Bayesian analogue of this bounded memory setting would be M equals the space of
probability simplex and the transition rule equals to Bayesian formula.

6Note that if the individual tracks his belief not with a finite automaton but with a real number
statistics. The cardinality of the belief statistics is much bigger than N and the model collapses
to a Bayesian model.
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asymptotic learning behavior is very close to Bayesian, i.e., individuals almost per-

fectly learn the true state; while in big worlds, asymptotic learning is significantly

different from Bayesian.

The second comparison concerns ignorance learning behaviors that mentioned

at the beginning of the introduction. Consider for example the phenomenon of

persistent over-confidence (Hoffman and Burks (2017), Heidhues et al. (2018)).

Suppose the state of the world comprises ability and luck ω = (ability, luck) ∈
{H,L} × {H,L} and the individual observes performance as signals. In the setting

of bounded memory, persistent over-confidence happens when the individual never

chooses the actions that correspond to the states {L}×{H,L} even after observing

a long sequence of bad performance.7 He only takes actions that correspond to ei-

ther (H,H) or (H,L), thus acts as if he always believes he has high ability and only

updates his belief on how much luck he has. Similarly, other heuristic or inattentive

learning behaviors could also be modeled as the individual ignores some states of

the world.8 I show that such ignorance learning behaviors are never optimal in small

worlds, but could be optimal in big worlds as the individual may focus learning on

a subset of states given his scarce cognitive resources.

Lastly, I look into the phenomenon of asymptotic disagreement in small and

big worlds. Consider two individuals who start with different prior beliefs over Ω

but observe a sequence of public signals and have the same objective information

structures; or two individuals with the same prior belief over Ω but observe a different

sequence of private signals generated by different signal structures. I show that in

small worlds, the two individuals almost always agree with each other in the sense

that they almost always take the same action asymptotically. In contrast, in big

worlds, the two individuals could be bound to disagree with each other even after

receiving infinitely many signals. Moreover, in big worlds, asymptotic disagreement

could be solely driven by differences in cognitive ability: even when two individuals

have the same prior beliefs and observe a sequence of public signals with an objective

signal structure, they could disagree with probability 1 as t → ∞. This is in

contrast with the existing literature that explains long-term disagreement based

on differences in prior beliefs (Rabin and Schrag (1999)) or uncertainties in signal

structures (Acemoglu et al. (2016)).

The paper is organized as follows. In the next section, I present the model setup.

Then I analyze the optimal learning behavior in small world problems and big world

problems in sections 3 and 4 respectively. In section 5, I conclude by presenting

a detailed discussion of the results and the connection with the existing literature.

Proofs and omitted results are presented in the appendix.

7As I assume one-to-one mapping from actions to states, if an individual never chooses an
action, it is as if he never pay attention to the corresponding state.

8I provide another example with the availability heuristic in section 2.1.

4



2 Model Setting

Consider a world withN possible true states of the world, i.e., ω ∈ Ω = {1, 2, · · · , N},
and a decision-maker (DM) who wants to learn the true state. I analyze two cases

that correspond to where N is fixed and finite, and at the limit that N goes to

infinite, because of their differences in both technical and economic implications.9,10

In each period t = 1 · · · ,∞, the DM takes an action/guess at ∈ A = Ω and he gets

utility uωN > 0 if he infers correctly the true state as ω, i.e., uN(a, ω) = uωN if a = ω;

otherwise, his utility equals 0. Thus, uωN measures how important it is to identify

the state ω. I assume no state is infinitely more important than any other state:

Assumption 1. For all ω, uωN ∈ [u, u] where u > 0 and u is finite.

A special case that satisfies the assumption is that uωN is constant across ω,

that is, the DM does not intrinsically discriminate any states. With some abuse of

notations, sometimes I denote action a = ω by action ω. The (potentially subjective)

prior belief of the DM is denoted as (pωN)Nω=1 where
∑N

ω=1 p
ω
N = 1 and I make the

following full support assumptions:

Assumption 2 (Full support prior with finite N). In the case where N is finite,

pωN > 0 for all ω.

Assumption 2’ (Full support prior with infinite N). In the case where N → ∞,

for any sequence of set ΩN ⊆ Ω with cardinality |ΩN | and a well-defined limit

limN→∞
|ΩN |
N

,

lim
N→∞

∑
ω∈ΩN

pωN > 0 if lim
N→∞

|ΩN |
N

> 0. (1)

Equation (1) ensures any sequence of sets of states that has non-negligible mea-

sure in fraction at the limit, i.e., limN→∞
|ΩN |
N

> 0, also has a non-negligible proba-

bility mass at the limit, i.e., limN→∞
∑

ω∈ΩN
pωN > 0.

In each period after taking an action,11 the DM receives a signal st ∈ S which

are independently drawn across different periods from a continuous distribution with

p.d.f. fωN in state ω.12 I assume no signals perfectly rule out any states of the world:

Assumption 3 (No perfect signals with finite/infinite N). There exists ς > 0 such

that infs∈S f
ω
N(s)/fω

′
N (s) > ς for all ω, ω′ ∈ Ω.

9Roughly speaking, analyzing the case where N → ∞ allows me to show that the behavioral
implications depend on N

M instead of the absolute value of N or M .
10As discussed in section 1.3.4 of Mailath and Samuelson (2020), arguably, the DM could include

in the state space infinitely many potential variables that affect the signal distributions such that
N always goes to infinity. I offer a brief discussion in section 5 on what constructs a state space
for the DM based on existing experimental studies and the resulting implications.

11The order, i.e., whether the DM receives a signal before or after taking an action in each
period, does not affect the result. The crucial assumption is that the action chosen by the DM
at each period depends only on the memory state he is in (his “belief”), but does not (directly)
depend on the signals he received.

12For ease of exposition, I assume signals follow a continuous distribution but the results hold
with more general probability measures.
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Assumption 3 says that the information structure in every state has the same

support. In other words, given any signal realization st, the DM will not learn

perfectly the true state. I also assume the following identifiability assumption such

that no pairs of signal structures are the same.

Assumption 4 (Identifiability with finite N). In the case where N is finite, there

are no ω and ω′ 6= ω such that fωN(s) = fω
′

N (s) for (almost) all s ∈ S.

In the case of infinite N , I make the following assumption about identifiability.

Assumption 4’ (Identifiability with infinite N). In the case where N →∞, for all

ε > 0, there exists some ξ > 0 and some sequence of subsets of states Nξ ⊆ Ω such

that limN→∞

(∑
ω∈Nξ p

ω
N

)
> 1− ε and

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

− log

∫
fωN(s)fω

′
N (s)ds√∫

(fωN(s))2ds
√∫

(fω
′

N (s))2ds

 > ξ,

such that signal structures with negligible Cauchy-Schwarz distances must have

negligible probability mass at the limit where N → ∞.13 In standard Bayesian

setting, the DM learns almost perfectly the true state when t → ∞.14 In contrast,

in this paper, I focus on a bounded memory setting that will be outlined below.

The DM is subject to a memory constraint such that he can only update his

belief using a M memory states automaton. That is, in each period, his belief

is represented by not a N − 1 dimensional probability simplex but a memory state

mt ∈ {1, 2, · · · ,M}. Upon receiving a signal st in period t, the DM updates his belief

from memory state mt to mt+1 ∈ {1, 2, · · · ,M}. An updating mechanism specifies

a (potentially stochastic) transition function between the M memory states given a

signal s ∈ S, denoted as T : M ×S →4M , and a (potentially stochastic) decision

rule d : M → 4A. Note that the updating mechanism (T , d) is restricted to be

stationary across all t = 1 · · · ,∞ to capture the idea of bounded memory.15,16 Given

an updating mechanism (T , d), the time-line of a given period t is summarized in

figure 1.

An example of updating mechanism. Consider a simple example where

there are two possible states, i.e., N = 2, and four memory states, i.e., M = 4. The

DM has a uniform prior belief p1
2 = p2

2 = 0.5. For simplicity, assume there does not

exists any uninformative signals, i.e., @ s such that f 1
2 (s) = f 2

2 (s). Figure 2 shows

13I provide an example that satisfies assumption 3 and 4’ in appendix B.
14See Blackwell and Dubins (1962).
15As discussed in Hellman and Cover (1970), a non-stationary updating mechanism implicitly

assumes the ability to memorize time, thus implicitly assumes a larger memory capacity.
16Note that switching between multiple M memory state automatons requires more than M

memory states, as illustrated in appendix A. Appendix A also shows an example to illustrate that
the current setting allows switching between smaller sized automatons, e.g., three automatons with
M+2

3 memory states.
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Starts at

memory state mt.

Takes action

at ∼ d(mt).

Receives

signal st.

Transits to memory state

mt+1 ∼ T (mt, st).

Figure 1: Time-line at period t given an updating mechanism (T , d).

1 2 3 4

S1 S1 S1

S2S2S2

S2 S1

Figure 2: A simple updating mechanism with N = 2 and M = 4. S1 denotes the
set of signals where f 1

2 (s) > f 2
2 (s) and S2 = S \ S1. The DM believes that state

1 is more likely as he moves towards the higher memory states. The DM’s actions
follow: d(1) = d(2) = 2 and d(3) = d(4) = 1.

a simple updating mechanism. The DM moves one memory state higher whenever

he receives a signal supporting state 1 where f 1
2 (s) > f 2

2 (s) and moves one memory

state lower otherwise. Moreover, his decision rule is such that he chooses action 1 if

and only if he is in memory state 3 or 4. With bounded memory, instead of tracking

his belief in the segment [0, 1], he only holds a rough idea on how likely state 1 or

state 2 are: he believes that state 1 (resp. state 2) is “very likely” if he is in memory

state 4 (resp. memory state 1), and is “likely” if he is in memory state 3 (resp.

memory state 2). �

In this setup N represents how big (or complicated) the world is, while M rep-

resents the cognitive resources of the DM. When M increases, the DM has a finer

“belief space” and more instruments to track beliefs. This gives a natural definition

of small and big world problems based on relative or perceived complexity: an in-

ference problem is a small world problem where N is much smaller than M and is

a big world problem otherwise. The formal definition is as follows and summarized

in table 2:

Definition 1 (Small and Big World with finite N). In the case where N is finite,

the inference problem is a small world problem at the limit where M →∞ and is a

big world problem if M is finite.

In the case where N → ∞, I analyze the interesting cases where M → ∞ with

slower and faster rate than N .17

Definition 1’ (Small and Big World with infinite N). In the case where N → ∞,

the inference problem is a small world problem if M → ∞ and N = O(Mh) where

17When M is finite and N → ∞, most of the results are trivial. For example, the DM will not
learn perfectly the true state.
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Small Worlds Big Worlds

Finite N At the limit of infinite M Finite M

At the limit of infinite N N = O(Mh) where h < 1 N = O(Mh) where h ≥ 1

Table 2: Definition of small and big worlds.

h < 1 and is a big world problem if M →∞ and N = O(Mh) where h ≥ 1.

In short, small worlds are inference problems with N
M

close to 0 and big worlds

are those with N
M

bounded away from 0. It is important to define small/big worlds

based on the relative size of the state space with respect to the cognitive ability of

the DM, instead of the absolute size of the state space. In particular, if the DM can

track his belief using the real number space, i.e., M is uncountably infinite, then

the model collapses to a standard Bayesian model and any inference problem with

countable state space is a small world problem.18

This paper analyzes the asymptotic learning of the DM, i.e., the DM aims to

choose an updating mechanism that maximizes his expected long run per-period

utility:

E

[
lim
T→∞

1

T

T∑
t=1

uN(at, ω)

]
.

Given state ω ∈ Ω, the sequence mt, together with some specified initial memory

state, forms a Markov chain over the signal space S. Note that fixing M , the

transition function T could be represented by a transition matrix between the

memory states given a signal realization s ∈ S:

Q(s) = [Pr{T (i, s) = j}] = [qij(s)] (2)

for i, j = 1, 2, · · · ,M where
∑M

j=1 qij(s) = 1 and qij(s) ≥ 0 for all i, j, s. Taking the

expectation over s, the transition probability matrices under state ω follows:

Qω
N =

∫
Q(s)fωN(s) ds. (3)

The stationary probability distributions over the memory states, denoted by µω
N =

(µωN1, µ
ω
N2, · · · , µωNM)T , is the solution to the following system of equations:

µω
N = (µω

N)TQω. (4)

Given the stationary probability distribution over the memory states, the condi-

tional probability of state ω given the DM is in memory state m equals
pωNµ

ω
Nm∑

ω′∈Ω p
ω′
N µ

ω′
Nm

18The result is obvious when N = 2. For N > 2, the result is implied by the fact that there
exists an one-to-one mapping between R to RN−1 for all N .
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so it would be optimal to choose d∗(m,T ) = arg maxω′ u
ω′pω

′
Nµ

ω′
Nm. Thus, I often

refer the transition function T as the updating mechanism by implicitly assuming

d(m) ∈ d∗(m,T ). Furthermore, for the ease of exposition, I restrict attention to

degenerate decision rules throughout the paper unless it is stated otherwise.19 De-

note Mω as the set of memory states in which the DM will take action ω. The

asymptotic utility of an updating mechanism T is equal to:

UN(T ) =
N∑
ω=1

[
uωNp

ω
N

( ∑
m∈Mω

µωNm

)]
(5)

and the asymptotic utility loss of an updating mechanism T is equal to:

LN(T ) =
N∑
ω=1

[
uωNp

ω
N

(
1−

∑
m∈Mω

µωNm

)]
. (6)

The DM maximizes asymptotic utility or, by duality, minimizes the asymptotic

utility loss associated with the updating mechanism. In the paper, I will mostly refer

the optimal design of updating mechanism as the minimization of LN . In general,

as shown in Hellman and Cover (1970), an optimal T may not exist.20 Therefore,

the rest of the paper focuses on ε-optimal updating mechanisms that are defined as

follows. Denote L∗NM = infT LN(T ). An updating mechanism T is ε-optimal if

and only if LN(T ) ≤ L∗NM + ε.

2.1 Small vs Big Worlds

In the subsequent sections, I will compare the learning behaviors, that is, the charac-

teristics of the ε-optimal updating mechanisms (for small ε) in small and big worlds

by answering the following questions.

Is learning close to Bayesian? The first question I ask is whether learning

behavior of the DM is close to that of a Bayesian individual in small and big worlds.

As we know, in the current setup, a Bayesian individual will (almost) perfectly

learn the true state of the world asymptotically, no matter how big N is. Thus this

question is equivalent to whether L∗NM is close to 0 in small and big worlds.

Definition 2. The asymptotic learning behavior of the DM is close to Bayesian if

19Some proofs are by contradiction with proposed deviations to non-degenerate decision rules.
Obviously, if there is a beneficial deviation to updating mechanisms with non-degenerate decision
rules, there must be (weakly) better deviations with degenerate decision rules.

20This is true because signals are continuously distributed. Roughly speaking, consider N =
M = 2, suppose the DM could improve his asymptotic utility by switching from m = 1 to m = 2

with signals that strongly support state 1, i.e., with large
F 1

2 (S1)

F 2
2 (S1)

. For any set of signal realizations

S1 with strictly positive measure F 1
2 (S1), F 2

2 (S1), the DM can always find another set of signal

realizations S′1 with strictly positive measure F 1
2 (S′1) and F 2

2 (S′1), and higher likelihood ratio
F 1

2 (S
′
1)

F 2
2 (S

′
1)

,

thus improves his asymptotic utility.
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and only if L∗NM = 0 (or limM→∞ L
∗
NM = 0 or limN,M→∞ L

∗
NM = 0 depending on

the situation in question as summarized in table 2).

The answer to this question sheds light on how well the Bayesian model ap-

proximates individual’s learning and decision making in different problems, which

would give us an idea on how robust theoretical results are to the setting of bounded

memory.

Is ignorance (close to) optimal? Behavioral economics and psychology litera-

ture has documented different types of ignorance learning behaviors, including the

use of heuristics (Kahneman et al. (1982)), correlation neglect (Enke and Zimmer-

mann (2019)), persistent over-confidence (Hoffman and Burks (2017)), ignorance of

informational content of others’ strategic behaviors (Eyster and Rabin (2005), Jehiel

(2005, 2018)) or in general ignorance of some relevant variables (Graeber (2019)).

Consider the classical example of availability heuristic. In the experiment of Tversky

and Kahneman (1973), the majority of participants reported that there were more

words in the English language that start with the letter K than for which K was the

third letter, while the correct answer is the reverse. The proposed explanation is

that individuals use availability heuristic: they pay attention only to the easiness of

recalling the two types of words but ignore the fact that it is easier to recall words

starting with K than words with K as the third letter. These ignorance behaviors are

sometimes thought to be naive or inattentive, while sometimes viewed as efficient

given our limited ability (Gigerenzer and Goldstein (1996), Gigerenzer and Brighton

(2009), Gigerenzer and Gaissmaier (2011)).

Applying to the setting in this paper, define ω1 as the event where there are

more words that start with K and ω′1 as the event where there are more words with

K as the third letter, and define ω2 as the event where the position of the K letter

affects the readiness of recall and ω′2 as the event where the position of the K letter

does not affect recall probability. Define the state space as {ω1, ω
′
1} × {ω2, ω

′
2}. In

Tversky and Kahneman (1973), individuals ignore the states (ω1, ω2) and (ω′1, ω2)

as they infer whether ω1 or ω′1 is true while implicitly fixing ω′2. As I assume an

one-to-one mapping from states to actions, I define ignorance as the behavior in

which the DM never picks some of the N actions.

Definition 3. An updating mechanism ignores state ω if the DM never picks ac-

tion ω under all states of the world as t→∞, i.e., either Mω = ∅ or
∑

m∈Mω µω
′

Nm =

0 for all ω′.21

21One may wonder why the DM would assign memory states to action ω if he never takes the
action. This could happen for example when the optimal updating mechanism involves always
picking action 1, e.g., when u1Np

1
N is big enough and the information structures are very noisy. In

that case, the DM can set Mω = {1}, T (1, s) = 1 for all s and the initial state as memory state 1
to achieve the optimal (always choosing action 1), and the decision rule d(m) for all m 6= 1 has no
impact on the asymptotic utility loss.
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It is important to note that I define ignorance based on the DM’s actions instead

of his “beliefs”. It is because different from the Bayesian setting, the DM with

bounded memory does not track his belief in all possible states but merely transit

between the memory states inM . Theses memory states do not have to be associated

with confidence levels of any of the N states. While one could interpret that the

DM transits between a countable subset of beliefs in the N -dimensional probability

simplex and always pays attention to his confident levels of all the N states, I believe

that this interpretation goes against the concept of bounded memory as it requires

unnecessary cognitive resources of the DM. In particular, as I assume an one-to-

one mapping from states to optimal action, if the DM never chooses a particular

action ω, he has no incentive to track his confidence level of state ω. Never choosing

an action ω is thus effectively equivalent to never being aware of the possibility of

state ω.

By definition, any updating mechanism is ignorant if M < N : if the DM lacks

the cognitive resources to consider all possible states, he has to be ignorant. In

the rest of the paper, I will focus on the more interesting case where M ≥ N and

analyze whether an ignorant updating mechanism could be ε-optimal for small ε.

Does disagreement persist among different individuals? The third question

relates to learning among heterogeneous individuals, in particular on whether they

will agree asymptotically. As discussed after definition 3 of ignorance behaviors, it

is tricky and arbitrary to define the distance of beliefs among different individuals

with bounded memory. Thus, I define agreement and disagreement based on actions.

Consider two individuals A and B with potentially different prior beliefs (pωNA) and

(pωNB), different signals structures (fωNA) and (fωNB), or different levels of cognitive

ability MA,MB, they agree with each other asymptotically if they choose the same

action as t→∞:

Definition 4. Two individuals A and B are bound (resp. almost bound) to agree

with each other asymptotically if and only if their actions aAt and aBt satisfy

lim
t→∞

PrN{aAt = aBt | ω} = 1

for all ω (resp. almost all ω measured with both (pωNA) and (pωNB)). They are bound

(resp. almost bound) to disagree with each other asymptotically if and only if,

lim
t→∞

PrN{aAt 6= aBt | ω} = 1.

for all ω (resp. almost all ω measured with both (pωNA) and (pωNB)).

And if limt→∞ PrN{aAt 6= aBt | ω} ∈ (0, 1), asymptotic disagreement happens

probabilistically. I study the question on whether individuals with different prior

beliefs but observe a long sequence of public information with eventually agree with
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each other, i.e., whether disagreement persists when individuals receive a large

amount of public information. I also ask the question on whether two individu-

als who start with the same prior but receive many private information and have

different abilities of information acquisition (fωN), or individuals with levels of cog-

nitive ability (M), will eventually disagree with each other in small and big worlds.

The latter contrasts with the existing literature that explain asymptotic disagree-

ment based on differences in prior beliefs or subjective information structures among

different individuals.

3 Small World

I first analyze the optimal learning mechanisms in small worlds where N
M

is small.

The following two propositions show that asymptotic learning behavior is close to

Bayesian.

Proposition 1. Fix a finite N and M →∞, asymptotic learning behavior is close

to Bayesian, i.e., limM→∞ L
∗
NM = 0.

Proposition 2. Suppose N,M → ∞ and N = O(Mh) where h < 1, asymptotic

learning behavior is close to Bayesian, i.e., limN,M→∞ L
∗
NM = 0.

Proposition 1 and 2 show that in small world, (almost) optimal asymptotic learn-

ing mechanisms is very close to the Bayesian counterpart, i.e., the DM (almost) al-

ways takes the action matches with the true state. The proof of the two propositions,

along with other proofs in the paper, are shown in appendix C. In the following, I

will roughly describe the proof by showing a simple learning mechanism, illustrated

in figure 3, achieves (almost) perfect asymptotic learning as M (or N,M) goes to∞.

The proposed simple mechanism tracks his favorable action and the corresponding

confidence level over time. At any period t, the DM believes one of the N actions

or no action is favorable, while the confidence level, if he has a favorable action, is

an integer ranging from 1 to bM−1
N
c. The memory states could thus be represented

by mt ∈ {0} ∪ {1, · · · , N} × {1, · · · , bM−1
N
c} where memory state 0 stands for no

favorable action. The decision rule is such that he takes the favorable action if he

has one, and randomly takes one of the N action with equal probability if he does

not have a favorable action. The transition rule is described as follows.

First, the DM starts with no favorable action, i.e., the red memory state named

“W” in figure 3.22 If he receives a confirmatory signal for a state ω, he changes his

favorable action to action ω with confidence level 1; if he receives signals that is not

confirmatory for any states, he stays in the same memory state W that he has no

favorable action.

22The starting memory state has no impact on the stationary distribution over the memory
states and does not affect the asymptotic payoff.
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W

...

X

action 1

confidence

level

...

Y

action 2

· · ·

...

· · ·

Z

...

action N − 1

...

action N

with length

bM−1N c

Figure 3: A simple updating mechanism that achieves perfect learning in small
worlds.

Second, suppose at some period t the DM’s favorable action is action ω with

confidence level K. If K < bM−1
N
c, e.g., in memory state X and Z, and he receives

a confirmatory signal for state ω, he revises upwards his confidence level to K + 1;

if K = bM−1
N
c, e.g., in memory state Y , and he receives a confirmatory signal for

state ω , he stays in his current memory state with the same favorable action ω and

the confidence level K = bM−1
N
c. On the other hand, if K > 1, e.g., in memory

state X and Y, and he receives a confirmatory signal for some state ω′ 6= ω, he

keeps action ω as his favorable action but revises downwards his confidence level to

K − 1 with some probability 1
δ
< 1 and keep his confidence level at K otherwise;23

if K = 1, e.g., in memory state Z, and he receives a confirmatory signal for some

state ω′ 6= ω, he transits to the red memory state W with no favorable actions with

some probability 1
δ
< 1 and otherwise stays in his current memory state with the

same favorable action ω and confidence level K = 1. Lastly, if he receives signals

that is not “confirmatory” for any states, he stays in his current memory state with

favorable action ω and confidence level K.

The proof involves carefully defining the set of confirmatory signals for each

state, such that it is more likely to receive a confirmatory signal for state ω than a

confirmatory signal for any other states when the true state is ω. It also involves

choosing a big enough δ such that it is more likely to adjust upwards than to adjust

downwards the confidence level of action ω when the true state is ω. Crucially,

with this simple mechanism, when M
N
→ ∞, the upper bound of the confidence

level goes to infinite which means that the DM can memorize infinitely many con-

firmatory signals for any state. Because asymptotically, the DM receives infinitely

23δ is constant across all K.
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more confirmatory signals for the true state than the confirmatory signals for the

any other states, as t→∞, the DM should almost surely memorize infinitely many

confirmatory signals for the true state and thus almost surely learn perfectly the

true state.

As the DM learns perfectly for all states of the world, intuitively he has no

incentive to ignore any of the N states. Thus, ignorance behavior is not optimal in

small worlds.

Corollary 1. Fix a finite N , there exists some M̄ such that if M > M̄ (e.g., when

M → ∞), there exists some ε > 0 such that no ignorant updating mechanism is

ε-optimal.

Corollary 2. Suppose N,M → ∞ and N = O(Mh) where h < 1, a sequence of

updating mechanism TN is ε-optimal only if it ignores at most ε
u

measures of states

at the limit.

Note that I have showed a stronger result in corollary 1: not only when M →∞
but when M is big enough (or equivalently when N

M
is small enough), ignorant

learning behavior is never optimal.

I now turn to the question on whether disagreement could persist asymptotically.

Consider two individuals A and B who have different prior beliefs (pωNA)Nω=1 and

(pωNB)Nω=1, or different abilities of information acquisition captured by (fωNA)Nω=1 and

(fωNB)Nω=1.24 As proposition 1 and 2 hold for all (pωN)Nω=1 and (fωN)Nω=1,25 different

individuals will be bound to choose the same action asymptotically if they adopt an

ε-optimal updating mechanism with ε→ 0.

Corollary 3. Fix a finite N and M →∞, different individuals with different prior

beliefs and/or information acquisition abilities are bound to agree asymptotically in

small worlds. That is, for all (uωNA, p
ω
NA, f

ω
NA)Nω=1 and (uωNB, p

ω
NB, f

ω
NB)Nω=1, fixing N

and M →∞, if the two individuals adopt ε-optimal mechanisms with ε→ 0,

lim
M→∞

lim
ε→0

lim
t→∞

PrN{aAt = aBt | ω} = 1 for all ω.

Corollary 4. Suppose N,M →∞ and N = O(Mh) where h < 1, different individ-

uals with different prior beliefs and/or information acquisition abilities are almost

bound to agree asymptotically in small worlds as long as they agree on 0 probabil-

ity events. That is, for all (uωNA, p
ω
NA, f

ω
NA)Nω=1 and (uωNB, p

ω
NB, f

ω
NB)Nω=1 such that

limN→∞ p
ω
NA > 0 if and only if limN→∞ p

ω
NB > 0 for all ω, if the two individuals

24For example, individual A could receive noisier signals than individual B, i.e., fωNA =
γ + (1− γ)fωNB for some γ ∈ (0, 1); or individual A could have different learning advantages, iden-

tifying some states better but other states worse than individual B, i.e., sups f
ω
NA(s)/fω

′

NA(s) >

sups f
ω
NB(s)/fω

′

NB(s) but sups f
ω′′

NA(s)/fω
′′′

NA(s) < sups f
ω′′

NB(s)/fω
′′′

NB(s) for some ω, ω′, ω′′, ω′′′.
25Note that I do not assume that individuals have the “correct” prior beliefs. As long as their

prior beliefs satisfy the full support assumption 2 or 2’, the results in this paper would hold.
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adopt ε-optimal mechanisms with ε→ 0,

lim
N,M→∞

lim
ε→0

∑
ω

[
1

{
lim
t→∞

PrN{aAt = aBt | ω} = 1
}
pωI

]
= 1 for I = A,B.

Thus, corollary 3 and 4 show that different individuals with different priors

and/or information acquisition abilities who adopt (almost) optimal updating mech-

anism are bound to agree with each other if they receive a large amount of (public

or private) information.

It is important and interesting to note that the assumption that the DM is

able design and adopt an optimal updating mechanism is not as far-stretched as

one may think. Put it differently, there is a large set of updating mechanisms that

would achieve limM
N
→∞ LN(T ) = 0 and guarantee asymptotic agreement. I illustrate

this “robustness” result in the appendix C.7. Roughly speaking, I consider the

aforementioned simple updating mechanism illustrated in figure 3 but assume that

the DM mistakenly transits to a neighboring memory state with some probability

γ in each period regardless of the signal realization st: in each period if the DM

has a confidence level K where bM−1
N
c > K > 1, he adjusts upwards or downwards

one unit of his confidence level mistakenly with equal probability γ
2
; if K = bM−1

N
c,

he adjusts downwards one unit of his confidence level mistakenly with probability

γ; if K = 1, he adjusts upwards one unit of his confidence level or transit to no

favorable action (the red memory state) with equal probability γ
2
; if he has no

favorable action, he changes his favorable action to action ω with confidence level 1

with equal probability γ
N

or all ω; with probability 1−γ, the DM follows the simple

updating mechanism illustrated in figure 3.

Such (local) mistake could be induced by mistakes in the perception of signals

or imperfect tracking (local fluctuation) of memory states. Appendix C.7 show

that the results of (almost) perfect learning, i.e., proposition 1 and 2, and asymtotic

agreement, i.e., corollary 3 and 4, hold for all γ ∈ [0, 1). Local mistake, however likely

it is, does not break down the results of (almost) perfect learning and asymptotic

agreement in small worlds.

4 Big world

Now I proceed to the analysis of the big world and show that the three implications

in the small world, i.e., asymptotic learning is close to Bayesian, ignorance is never

optimal, disagreement does not persist, do not hold. Before I present the results,

it would be useful to discuss a simple example of N = M = 2, to understand how

bounded memory affects asymptotic learning and to introduce variables that capture

important features of an updating mechanism.

An example of N = M = 2. Suppose M1 = {1} and M2 = {2}, i.e., the DM
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takes action 1 in memory state 1 and action 2 in memory state 2. An important

feature of the updating mechanism is the state likelihood ratios in the memory states

that measures how likely the DM will be in a memory state m under state ω vs that

under state ω′.

Definition 5. The state ω − ω′ likelihood ratio at memory state m is defined as
µωNm
µω
′
Nm

.

The higher the state ω−ω′ likelihood ratio at memory state m is, given that the

DM is in memory state m, the more confident he is that the true state is ω instead

of ω′. In this simple example, a good updating mechanism induces a high
µ1

21

µ2
21

and a

low
µ1

22

µ2
22

. In particular, perfect learning requires that the state 1− 2 likelihood ratio

goes to infinity at memory state 1 but equals 0 at memory state 2. In other words,

the DM has to be almost sure that state 1 is true when he takes action 1 and almost

sure that state 2 is true when he takes action 2. However, as shown in Hellman

and Cover (1970), the ratio of the likelihood ratio between two memory states is

constrained by the information structures and the bounded memory. Intuitively, to

be almost sure about state ω, the DM has to have the ability to record/memorize

almost perfect information supporting state ω, either through recording one (al-

most) perfect confirmatory signal or infinitely many imperfect confirmatory signal

supporting state ω. However, in the current setting the former is constrained by

the information structure, i.e., assumption 3, and the latter is constrained by the

bounded memory. To illustrate this constraint, define the state ω − ω′ spread as:

Definition 6. Denote the state ω−ω′ spread as Υωω′
N which is given by the following

equation:

Υωω′

N =
maxm∈Mω

µωNm
µω
′
Nm

minm∈Mω′
µωNm
µω
′
Nm

In this simple example, Υ12
2 =

µ1
21

µ2
21
/
µ1

22

µ2
22

. I will show it the following that Υ12
2 is

bounded above, such that the DM can never be sure both when he takes action ω

and ω′. In an irreducible automaton, i.e., µωNm > 0 for all m, the probability mass

moving from m = 1 to m = 2 must be equal to the probability mass moving to

the opposite direction. Suppose the DM updates his belief from m = 1 to m = 2

given some signals S2 and updates in the opposite direction given some signals S1,

we have in the stationary distribution

µ1
21F

1
2 (S2) = µ1

22F
1
2 (S1)

µ2
21F

2
2 (S2) = µ2

22F
2
2 (S1)

Thus,

Υ12
2 =

µ1
21

µ2
21

/
µ1

22

µ2
22

=
F 1

2 (S1)

F 2
2 (S1)

/
F 1

2 (S2)

F 2
2 (S2)

≤ l
12

2 l
21

2 (7)
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µ1
22

µ2
21

µ1
22

1−µ1
22

µ2
21

1−µ2
21
≥ 100

u1
2p

1
2µ

1∗
22 + u2

2p
2
2µ

2∗
21 = L∗

µ1∗
22

µ2∗
21

Figure 4: This example illustrates the trade-off between inference of the two states,

where l
12

2 l
21

2 = 100. The feasibility set of µ1
22 and µ2

21 is shown as the gray area
(which may not include the boundary) and the infimum of utility loss is given by
the point where the objective function touches the feasibility set.

where l
ωω′

N = supFω′N (S′)>0

FωN (S′)

Fω′ (S′)
. This bound on the state 1− 2 spread, imposed by

the (maximum) informativeness of the signals and the bounded memory, induces a

trade-off between the inference the two states. Suppose l
12

2 l
21

2 = 100. If the DM

wants to design an automaton such that he chooses action 1 with probability 99%

in state 1 , then

99

µ2
21

/
1

µ2
22

≤ 100

µ2
21

µ2
22

≥ 99

100
,

µ2
21 ≥

99

199
,

i.e., the DM has to make mistake in state 2 (chooses action 1) more than almost

half of the time. If however he decreases his quality of decision making in state 1

such that he chooses action 1 in state 1 with probability 90%, then µ2
21 ≥ 9

109
and

he could make mistake in state 2 with probability as low as 8.3%.

How much the DM would trade-off between the inference of the two states depend

on the prior attractiveness of the two actions: u1
2p

1
2 vs u2

2p
2
2. When u1

2p
1
2 is bigger

than u2
2p

2
2, the DM is willing to sacrifice inference in state 2 to improve inference in

state 1. The trade-off is illustrated in figure 4. As I will show later, this trade-off

implies that ignorant learning behavior could be optimal.

As shown in Hellman and Cover (1970), when M increases, the upper bound

on Υ12
2 increases and the DM can sacrifice less on inference in one state to improve

inference in another state. In particular, when M →∞, the bound goes to infinity

and the DM can achieve almost perfect learning in both states, as previously shown

in the cases of small worlds. In contrast, this paper shows that what matter is not
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the absolute value of M , but the fraction M
N

. �

The following two propositions show that in the big world asymptotic learning

is imperfect, and thus significantly different from Bayesian. It thus generalizes the

aforementioned result in Hellman and Cover (1970) with N = 2, and more impor-

tantly, shows that what matter is the ratio M
N

rather than the absolute value of M .

It implies that fixing the cognitive resources of individuals, learning behaviors in a

complicated problem are more likely to differ from Bayesian learning compared to

that in a simple problem.

Proposition 3. Suppose both N and M are finite, asymptotic learning differs signif-

icantly from Bayesian learning, i.e., L∗NM > 0. Moreover, fixing N , L∗NM decreases

in M , i.e., asymptotic learning becomes closer to Bayesian learning as M increases.

Proposition 4. Suppose N,M → ∞ and N = O(Mh) where h ≥ 1, asymptotic

learning differs significantly from Bayesian learning, i.e., limN,M→∞ L
∗
NM > 0.

Comparing proposition 3 and 4 with proposition 1 and 2 gives us the first dif-

ference of learning behavior in small and big worlds. In small world problems,

asymptotic learning could be well approximated by Bayesian updating; while in big

worlds, asymptotic learning behavior significantly differs from Bayesian updating.

Moreover, the second part of proposition 3 implies that fixing N , learning behavior

gets closer to the Bayesian benchmark when M increases or equivalently when the

relative complexity N
M

decreases.26

To understand the intuition of proposition 3 and 4, it would be useful to revisit

the simple updating mechanism proposed in the small world (see figure 3). Different

from the case of small worlds, in big worlds, the range of confidence levels are

bounded above for all (or almost all measured in fraction when N,M →∞) states

of the world as M
N
< ∞, as illustrated in figure 5. As M

N
is bounded above, no (or

negligible fraction of) actions could be allocated with infinite number of memory

states. As a result, in states of the world where confidence level is bounded above,

the DM is not able to record infinite (imperfect) signals supporting that state against

the other and thus will not be almost sure about his action. As the DM is never

almost sure about choosing action ω, it implies that there is a positive probability

that he chooses action ω in other states ω′ 6= ω, which leads to utility loss. Thus

L∗NM > 0.

The second difference between small and big worlds concerns the optimality of

ignorance learning behaviors. In a big world, as mentioned above, the DM cannot

allocate infinite cognitive resources to all states of the world. As the DM is bound

to make mistakes when he take actions, he thus faces meaningful trade-off in the

26Note that it is difficult to directly compute the comparative statics with respect to M
N because

when N changes, prior beliefs and the signal structures, i.e., the nature of the inference problem,
also change.
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action N
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length

Figure 5: The simple updating mechanism, revisited, in a big world and with differ-
ent range of confidence level across different actions. In particular, confidence level
of all actions 1, 2, · · · , N are bounded above.

allocation of cognitive resources as he trades off between the probability of mistakes

in different states of the world.27 Intuitively, when the prior probability of a state is

very low, the DM would rather allocate cognitive resources to infer about other states

of the world and ignore that à priori unlikely state.28 The following two propositions

show that such ignorance behavior could indeed be optimal in big worlds.

Proposition 5. Suppose N and M are finite. There exists some ξ > 0 such that

when pωN < ξ and ε → 0, all ε-optimal updating mechanisms ignore state ω, i.e.,

limε→0M
ω = ∅ or limε→0

∑
m∈Mω µω

′
Nm = 0 for all ω′ ∈ Ω.

On the other hand, suppose for some (uω
′

N , p
ω′
N )Nω′=1, when ε → 0, all ε-optimal

updating mechanisms ignore state ω. Then for (ũω
′

N , p̃
ω′
N )Nω′=1 such that

ũω
′

N p̃
ω′
N

ũω
′′

N p̃ω
′′

N

=
uω
′

N p
ω′
N

uω
′′

N pω
′′

N

for all ω′, ω′′ 6= ω;

ũωN p̃
ω
N

ũω
′

N p̃
ω′
N

<
uωNp

ω
N

uω
′

N p
ω′
N

for all ω′ 6= ω,

when ε→ 0, all ε-optimal updating mechanisms ignore state ω.

27In small world, the DM can allocate infinite memory states to all actions. Adding or taking
away a finite number of memory states for each action thus does not affect stationary distribution
and utility. Thus there is no meaningful trade-off in small worlds.

28Note that the trade-off does not only happen in the allocation of memory states to Mω for
different ω, but also in chooing the asymptotic probability of taking different actions. More specif-
ically, a lower probability of choosing action ω,

∑
m∈Mω µω′

Nm = 0, implies a higher probability of
choosing other actions.
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Proposition 6. Suppose N,M → ∞ and N = O(Mh) where h ≥ 1, all updating

mechanisms must ignore almost all (measured in fraction) states.

Note that the statements in proposition 5 and 6 are different. Proposition 5

says that there exists some prior beliefs such that the DM with those prior beliefs

will ignore some states when he adopts an (almost) optimal updating mechanism.

In contrast, proposition 6 is “stronger”: all learning mechanisms, including the

(almost) optimal updating mechanism have to be ignorant. The intuition of the

former has been briefly mentioned before the proposition: when the DM cannot

allocate infinite cognitive resources and achieve perfect learning in all states of the

world, he faces meaningful trade-off between learning across different states of the

world. In that case, it might be efficient to focus on a strict subset of the states

of the world, i.e., to adopt an ignorant learning mechanism. On the other hand,

roughly speaking, the intuition of proposition 6 is as follows: when M → ∞, each

probability on each memory state become infinitesimally small. As the DM cannot

allocate infinite memory state in almost all Mω, i.e., the DM take each action ω in a

finite subset of memory states, he must picks almost all actions with 0 probability.

Nonetheless, comparing proposition 5 and 6 with corollary 3 and 4 show that ig-

norance behavior could be optimal only in big worlds but not in small worlds. As will

be discussed in details in next section, this explains inattentive/neglecting/heuristics

learning behavior documented in Tversky and Kahneman (1973), Enke and Zimmer-

mann (2019) and Graeber (2019), and provides micro-foundation to the equilibrium

concepts proposed in Eyster and Rabin (2005) and Jehiel (2005). Importantly, it

also speaks to in what circumstances these behavioral abnormalities are likely to be

observed, i.e., in big worlds where the relative complexity of inference problems is

high.

As different individuals with different prior beliefs and utility matrix would adopt

different updating mechanism, they could focus their learning on, or ignore, dif-

ferent subsets of states of the world and thus disagree asymptotically. Consider

two individuals with different utility functions and prior beliefs (uωNA, p
ω
NA)Nω=1 and

(uωNB, p
ω
NB)Nω=1, but receive a long sequence of public signal where (fωNA)Nω=1 =

(fωNB)Nω=1 for all ω, or two individuals with the same utility functions and prior

beliefs, but receive private signals that are generated by different signal structures,

or two individuals with different utility functions, prior beliefs and signals struc-

tures, etc., the following two corollaries show that they might disagree with each

other with certainty as t→∞ even when they adopt an (almost) optimal updating

mechanism.

Corollary 5. Suppose N and M are finite. There exists some (uωNA, p
ω
NA, f

ω
NA)Nω=1

and (uωNB, p
ω
NB, f

ω
NB)Nω=1 such that the two individuals are bound to disagree when
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they adopt ε-optimal updating mechanism with ε small enough:

lim
ε→0

lim
t→∞

PrN(aAt 6= aBt | ω) = 1 for all ω.

Corollary 6. Suppose N,M → ∞ and N = O(Mh) where h ≥ 1. For all ε > 0,

there exists some (uωNA, p
ω
NA, f

ω
NA)Nω=1 and (uωNB, p

ω
NB, f

ω
NB)Nω=1 and ε-optimal updat-

ing mechanisms (TNA, dNA) and (TNB, dNB) such that the two individuals adopting

(TNA, dNA) and (TNB, dNB) are bound to disagree:29

lim
N,M→∞

lim
t→∞

PrN(aAt 6= aBt | ω) = 1 for all ω.

It is important to note that the disagreement are certain in the two corollaries,

instead of probabilistic: the two individuals would never agree with each other as

they would focus on learning some disjoint sets of states. Again, comparing corol-

lary 3 and 4 with corollary 5 and 6, we can conclude that asymptotic disagreement

only happens in big worlds but not in small worlds.

4.1 Disagreement driven by differences in cognitive ability

Corollary 5 and 6 show that individuals could be bound to disagree asymptotically,

if they have different utility functions, priors beliefs and/or information structures.

This subsection shows that disagreement could also be driven by differences in cog-

nitive ability. I illustrate the result in the following example. Consider a setting

with N = 3 and two individuals, A and B, who share the same prior beliefs and the

same objective signal structure:

p1
3 =

1

3
+ 2ν

p2
3 =

1

3
− ν

p3
3 =

1

3
− ν

(8)

sup
s

f 1
3 (s)

fn3 (s)
= sup

s

fn3 (s)

f 1
3 (s)

=
√

1 + τ for n = 2, 3

sup
s

f 2
3 (s)

f 3
3 (s)

= sup
s

f 3
3 (s)

f 2
3 (s)

=
√

1 + Υ where Υ > τ .

with 1 + τ ≥
1
3

+2ν
1
3
−ν .30 Moreover, to simplify things, assume u1

3 = u2
3 = u3

3 = 1. The

only difference the two individuals have is their levels of cognitive ability, in which

individual A has M = 1 and individual B has M = 2. I present the following result.

29Note that corollary 6 is weaker than corollary 5 in a sense that there exists some, but not all,
ε-optimal updating mechanisms that lead to disagreement.

30It ensures that if M ≥ 2, the DM never pick action 1 with probability 1 and he can achieve a
lower utility loss compared to the benchmark of no information.
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Proposition 7. There exists ν, τ,Υ such that individual A and B adopting ε-optimal

mechanisms are bound to disagree for small ε, i.e.,

∃ν, τ,Υ, ε̃ > 0 such that lim
t→∞

Pr3{aAt 6= aBt | ω} = 1 for all ω and ε < ε̃.

The intuition is as follows: individual A obviously always choose action 1 as he

has not enough cognitive resources to learn. On the other hand, when ν is small

enough, and when Υ is much bigger than τ , it is more beneficial individual B to

focus on learning state 2 and 3 as the signals supporting the two states are more

informative. In this case, he never chooses action 1 and thus never agrees with

individual A.31

Proposition 7 shows that even when individuals start from the same prior and

has the same objective signal structures, they can be bound to disagree with each

other after receiving a large amount of public information.32 This result proposes

a different channel of asymptotic disagreement that is in contrast with the existing

explanations that assume different individuals have different prior beliefs or perceive

signals in different ways.

5 Discussion and Conclusion

Limited ability and behavioral abnormalities This paper contributes to a

growing set of theoretical literature that explains behavioral abnormalities as opti-

mal or efficient strategies assuming individuals have limited ability. Wilson (2014)

shows that in the case where N = 2, individuals with bounded memory exhibits con-

firmation bias; Steiner and Stewart (2016) shows that an optimal response to noises

in perceiving details of lotteries leads to phenomenon of probability weighting in

prospect theory (Kahneman and Tversky (1979)); Jehiel and Steiner (2019) and Le-

ung (2020)) shows that a capacity constraint in belief updating drives confirmation

bias and other biases in belief formation.

Different from the literature, this paper explains a larger set of behavioral ab-

normalities including ignorant learning behaviors, departures from Bayesian learning

and disagreement among individuals. In particular, different phenomena, such as

use of heuristics, correlation neglect, inattentive learning, persistent over-confidence

and other model misspecification can be modeled as ignorant learning behavior in

31One may argue that after seeing individual B choosing action 2 or 3, individual A should
change his action. Note that however this is not possible as he has only one unit of memory
capacity M = 1 and thus have to effectively committed to one action. In particular, one can
generate this framework to which the two individuals also see each others’ action as signals and
proposition 7 would still hold.

32Note that although this example imposes strong assumptions in particular on the size of
bounded memory of individual A, it generates a strong form of disagreement in which the two
individuals disagree asymptotically with certainty. Similar intuition implies that even when the
assumption is relaxed, difference in M would lead to asymptotic disagreement at least probabilis-
tically.
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this setting.33 Moreover, this paper also connects the relative complexity of infer-

ence problems to behavioral abnormalities and derives testable predictions on their

prominence: the prominence of these behavioral abnormalities should increases in

the relative complexity of the inference problem.

Asymptotic disagreement/polarization Next, the results on asymptotic dis-

agreement contributes to the large literature that explains the phenomenon. In the

existing literature, asymptotic disagreement is driven by differences in signal distri-

butions across state or exogenous learning mechanisms (Morris (1994), Mailath and

Samuelson (2020), Gilboa et al. (2020)), the lack of identification (or uncertainty in

signal distributions) (Acemoglu et al. (2016), confirmation bias (Rabin and Schrag

(1999)), or model misspecification (Berk (1966), Freedman (1963, 1965)).

Differently, this paper looks into the connection between limited ability and dis-

agreement, and show when asymptotic disagreement could arise and when it will not

happen, depending on the relative complexity of the inference problem. Moreover,

proposition 7 shows that disagreement could arise solely because of differences in

cognitive abilities, even when two individuals share the same prior without model

misspecification, perceive signals in the same way with objective signal structures

across states, adopt an (almost) optimal updating mechanism and observe a large

amount of public information. To the best of my knowledge, this novel mechanism

that disagreement can be driven by differences in cognitive ability has not been

studied in the theoretical literature.

Heuristic(ignorance) learning As previously mentioned, the results of igno-

rance behavior explain the inattentive/neglecting/heuristic inference behavior doc-

umented in Tversky and Kahneman (1973), Enke and Zimmermann (2019) and

Graeber (2019), and micro-found those modeled in the concept of cursed equilib-

rium (Eyster and Rabin (2005)), analogy-based equilibrium (Jehiel (2005)), selection

neglect (Jehiel (2018)) or persistent over-confidence (Heidhues et al. (2018)). Im-

portantly, the comparison of small and big worlds illustrates a link between the

(relative) complexity of the inference problem and the ignorance behavior, which is

supported by results in Enke and Zimmermann (2019) and Graeber (2019). The

former shows in section 2.4.3 that inattentive learning negatively correlates with

the cognitive ability of subjects and in section 3.1 that “an extreme reduction in

the environment’s complexity eliminates the bias”, while the latter shows that a

reduction in the complexity of the problem by removing a decipher stage of signals

reduces inattentive learning behavior.

Interestingly, Enke and Zimmermann (2019) and Graeber (2019) also shows

that simply reminding subjects about the neglected variables reduces inattentive

33The optimality/efficiency of ignorant learning behaviors is also studied in the psychology lit-
erature, notably in Gigerenzer and Goldstein (1996) and Gigerenzer and Gaissmaier (2011).
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learning and improves inference. It seems to contradict the result in this paper

that shows inattentive learning could be optimal. However, this “reminder effect”

could be interpreted in the current setup via a change in the state space. Con-

sider the behavior of inattentive inference in Graeber (2019). Denote the variable

that subjects are asked to infer as A and the ignored variable as B. Before be-

ing reminded about the ignored variable, the state state is supp(A) × supp(B) ×
{B affects the signal distribution, B does not affect the signal distribution}, in which

subjects might ignore the states that say “B affects the signal distribution”, i.e.,

they adopt an ignorance learning mechanism. After being reminded about the ef-

fect of B, the set of states of the world reduces effectively to supp(A)× supp(B)×
{B affects the signal distribution} and subjects adopt another learning mechanism

that does not involve ignorance learning.

The mechanism mentioned in the previous paragraph thus brings forth an open

question that is not answered in this paper. In reality, individuals face different (set

of) inference problems and are likely endowed with different learning mechanisms

for different sets of states of the world. Like in the example mentioned in the

last paragraph, some states space could be nested in another, and individuals could

transit from one learning mechanism to another given some information that triggers

him to revise the states space. This is also related to the question of how individuals

construct the state space given an inference problem. Arguably, there are infinitely

many variables that might affect the signal distributions, thus their realizations

could be incorporated in the set of possible states. Roughly speaking, the result of

ignorance seems to suggest that individuals may only include the most “important”

or “à priori probable” states, while the “reminder effect” suggests that the construct

of the state space also depends on the information received by the individual. Moving

forward, I believe that the question of how individuals construct their perceived state

space deserves more in depth and careful analysis as it is fundamental to individuals’

learning behavior.
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Heidhues, Paul, Botond Kőszegi, and Philipp Strack (2018) “Unrealistic expecta-

tions and misguided learning,” Econometrica, Vol. 86, No. 4, pp. 1159–1214.

25



Hellman, Martin E and Thomas M Cover (1970) “Learning with finite memory,”

The Annals of Mathematical Statistics, pp. 765–782.

Hellman, Martin Edward (1969) Learning with finite memory Ph.D. dissertation,

Standford University.

Hoffman, Mitchell and Stephen V Burks (2017) “Worker overconfidence: Field evi-

dence and implications for employee turnover and returns from training,”Technical

report, National Bureau of Economic Research.

Jehiel, Philippe (2005) “Analogy-based expectation equilibrium,” Journal of Eco-

nomic theory, Vol. 123, No. 2, pp. 81–104.

(2018) “Investment strategy and selection bias: An equilibrium perspective

on overoptimism,” American Economic Review, Vol. 108, No. 6, pp. 1582–97.

Jehiel, Philippe and Jakub Steiner (2019) “Selective sampling with

information-storage constraints,” The Economic Journal, DOI:

https://doi.org/10.1093/ej/uez068.

Kahneman, Daniel (2011) Thinking, fast and slow : Macmillan.

Kahneman, Daniel, Paul Slovic, and Amos Tversky (1982) Judgment under uncer-

tainty: Heuristics and biases : Cambridge university press.

Kahneman, Daniel and Amos Tversky (1979) “Prospect Theory: An Analysis of

Decision under Risk,” Econometrica, Vol. 47, No. 2, pp. 263–292.

Leung, Benson Tsz Kin (2020) “Limited cognitive ability and selective information

processing,” Games and Economic Behavior, Vol. 120, pp. 345–369.

Mailath, George J and Larry Samuelson (2020) “Learning under Diverse World

Views: Model-Based Inference,” American Economic Review, Vol. 110, No. 5, pp.

1464–1501.

Monte, Daniel and Maher Said (2014) “The value of (bounded) memory in a chang-

ing world,” Economic Theory, Vol. 56, No. 1, pp. 59–82.

Morris, Stephen (1994) “Trade with heterogeneous prior beliefs and asymmetric

information,” Econometrica, pp. 1327–1347.

Rabin, Matthew (1998) “Psychology and economics,” Journal of Economic Litera-

ture, Vol. 36, No. 1, pp. 11–46.

Rabin, Matthew and Joel L Schrag (1999) “First impressions matter: A model of

confirmatory bias,” The Quarterly Journal of Economics, Vol. 114, No. 1, pp.

37–82.

26

http://dx.doi.org/https://doi.org/10.1093/ej/uez068


Savage, Leonard J (1972) The foundations of statistics : Courier Corporation.

Steiner, Jakub and Colin Stewart (2016) “Perceiving prospects properly,” American

Economic Review, Vol. 106, No. 7, pp. 1601–31.

Tversky, Amos and Daniel Kahneman (1973) “Availability: A heuristic for judging

frequency and probability,” Cognitive psychology, Vol. 5, No. 2, pp. 207–232.

Wilson, Andrea (2014) “Bounded memory and biases in information processing,”

Econometrica, Vol. 82, No. 6, pp. 2257–2294.

27



1 2 3

Initial
memory state

4 5

6

7

8

9

10

11

12

13

(T , d)

(T ′′, d′′)
(T ′, d′)

Figure 6: An example of a 13-memory states automaton that involving switching
between three 5-memory states automatons. The DM starts at memory state 3 with
(T , d), and switch to (T ′, d′) and (T ′′, d′′) once he transits to memory state 1 and
5 respectively.

A Switching between different automatons

This section illustrates how the setup in this paper allows the DM to switch between

automatons with size smaller than M .

I first argue that assuming the DM could switch between multiple learning mech-

anism with M memory states implicitly implies that he has a larger memory capac-

ity than M . Suppose a DM starts with (T , d) at memory state m0 and switch to

(T ′, d′) and (T ′′, d′′) once he transit to memory state m1 and m2 respectively. As

(T , d) 6= (T ′, d′) 6= (T ′′, d′′), when the DM receives a signal s at memory state m

and decides to which memory state he transit to, or when he decides which action

he takes at memory state m, he has to remember whether he has once transited to

memory state m1 and m2. In other words, the DM has to track not only his current

memory states, but have to memorize the (incomplete) history of his previous mem-

ory states. Switching between multiple automatons thus implicitly implies a larger

memory capacity.

Now I illustrate by an example that a M memory states automaton could be

designed to involve switching between automatons with smaller sizes. The example

is illustrated in figure 6. In the example, the DM starts at memory state 3 with a

learning mechanism (T , d) that involves 5 memory states 1 to 5. Once he transit

to memory state 1, he switch to another learning mechanism (T ′, d′) that involves

5 memory states 1, 10, 11, 12, 13. On the other hand, once he transit to memory

state 5, he switch to the learning mechanism (T ′, d′) that involves 5 memory states

5, 6, 7, 8, 9. Thus, the proposed 13 memory states automaton can be interpretation

as a mechanism that involve switching between three 5 memory states automatons.
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Figure 7: Signal structures that satisfies assumption 3 and 4’ as N →∞. The signal
structures comprise of low and high density alternatively in 2ω equal-sized intervals.

B Example of a sequence of signal structures that

satisfies assumption 3 and 4’

In this section, I provide an example of a sequence of signal structures that satisfies

assumption 3 and 4’. Consider the following (set of) signal structures (fω)Nω=1 with

S = [0, 1):

f 1
N(s) =

2
3

for s ∈ [ i
21 ,

i+1
21 ) where i = 0

4
3

for s ∈ [ i
21 ,

i+1
21 ) where i = 1

fωN(s) =

2
3

for s ∈ [ i
2ω
, i+1

2ω
) where i = 0, 2, · · · , 2ω − 2

4
3

for s ∈ [ i
2ω
, i+1

2ω
) where i = 1, 3, · · · , 2ω − 1

The signal structures are illustrated in figure 7. First, it satisfies assumption 3 as
fωN (s)

fω
′

N (s)
≥ 1

2
for all ω, ω′ and s. Second, given any ω and ω′ 6= ω and for any N , the

Cauchy-Schwarz distance is equal to:

− log

∫
fωN(s)fω

′
N (s)ds√∫

(fωN(s))2ds
√∫

(fω
′

N (s))2ds
=− log

1
4
(2

3
)2 + 1

2
2
3

4
3

+ 1
4
(4

3
)2

1
2
(2

3
)2 + 1

2
(4

3
)2

=− log
1

10/9
> 1 + ξ

where ξ < log 10
9
− 1 and thus satisfies assumption 4’.
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C Omitted Proofs and Results

C.1 Proof of proposition 1

Proof. Before I prove the proposition, I present and prove the following lemma. With

slight abuse of notations, I use F to denote the probability mass on any lotteries

of signals, i.e., for any lotteries of signal S ′ =
∑

s g(s) × s where g ∈ 4(S ∪ {∅}),
F ω
N(S ′) ≡

∫
fωN(s′)g(s′) ds′.

Lemma C.1. There exists δ > 1 and a set of lotteries of signals {SωN}Nω=1 such that

δF ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

> 1 for all ω, ω′ ∈ Ω;

δF ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

>
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

for all ω ∈ Ω and ω′ 6= ω.

(C.1)

Moreover if (δ, {SωN}Nω=1) satisfies equation (C.1), (δ, {S ′ωN }Nω=1) where S
′ω
N = β ×

{S ′ωN }+ (1− β)× {∅} also satisfies equation (C.1) for all β ∈ (0, 1].

Proof. First, note that δ does not affect the second inequality. Thus, for all ω and

ω′ such that F ω
N(Sω

′
N ) > 0, there always exists a big enough δ that satisfies the first

inequality.

I proceed to show that there exists a set of lotteries of signals {SωN}Nω=1 such that

F ω
N(Sω

′
N ) > 0 for all ω, ω′ ∈ Ω and satisfies the second inequality. Note that

δF ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

>
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

⇐⇒ F ω
N(SωN) > F ω

N(Sω
′

N ).

Denote A ≡ min

{
1,minω

√∫
(fωN (s))2 ds∫

(fωN (s))2 ds

}
and consider34

SωN =
∑
s∈S

 AfωN(s)√∫
(fωN(s))2ds

× s

+

(
1− A

√∫
(fωN(s))2ds

)
× ∅, (C.2)

i.e., a random lottery that put mass
AfωN(s)√∫
(fωN(s))2ds

on each signal s and the re-

maining probability on the empty set. We have

F ω
N(SωN) =

A
∫

(fωN(s))2ds√∫
(fωN(s))2ds

= A

√∫
(fωN(s))2ds >

A
∫
fωN(s)fω

′
N (s)ds√∫

(fω
′

N (s))2ds
= F ω

N(Sω
′

N )

34Note that the choice of A is only to ensure that the probabilities in the random lottery of
signal Sω

N sum up to be 1. In particular, it does not affect the subsequent proof and the stationary
probability distribution among memory states, as will be shown in the second part of the lemma C.1.
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a1

a2

a3

a4

Figure 8: This figure illustrate a “star” updating mechanism with 4 actions. In the
central (red) memory state, the DM randomly chooses one of the 4 actions. There
are 4 equiv-length branches that correspond to each of the 4 actions.

where the inequality is given by the Cauchy–Schwarz inequality.

Now I prove the second part of the inequality. Note that

δF ω
N(S

′ω′
N )∑

ω′′ 6=ω′ F
ω
N(S

′ω′′
N )

=
βδF ω

N(Sω
′

N )∑
ω′′ 6=ω′ βF

ω
N(Sω

′′
N )

=
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

for all ω, ω′ Thus, (δ, {S ′ωN }Nω=1) satisfies equation (C.1).

Now, I construct a sequence of updating mechanism with asymptotic utility loss

converges to 0 as M → ∞. Consider a “star” updating mechanism illustrated in

figure 8. In the central memory state of the star, the DM randomly chooses one of

the N actions; while there are N equiv-length branches that correspond to each of

the N actions. For the ease of exposition, denote λ = b(M − 1)/Nc, I relabel the

memory states in the star as 0, 11, 12, · · · , 1λ, 21, 22, · · · , 2λ, · · · , Nλ and denote the

unused memory states as Nλ+ 1, Nλ+ 2, · · · ,M − 1. Formally, the decision rule is

as follows:35

d(0) =
1

N
× {1}+

1

N
× {2}+ · · ·+ 1

N
× {N};

d(ik) = i for all i = 1, . . . , N and k = 1, · · · , λ;

d(m) = 1 for all m > Nλ.

The transition function between the memory states is defined as below for some

δ > 1 and {SiN}Ni=1 that satisfies the two inequalities in lemma C.1. Denote SiN(s)

35The action chosen in the unused memory states can be assigned to any of the N actions.
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as the probability assigned to the realization s in the lottery SiN and pick {SiN}Ni=1

such that
∑N

i=1 S
i
N(s) ≤ 1 for all s ∈ S.36 Suppose the DM receives some signal s,

he follows the following transition rule:

T (0, s) =
N∑
i=1

SiN(s)× {i1}+

(
1−

N∑
i=1

SiN(s)

)
× {0}

T (i1, s) = SiN(s)× {i2}+
∑

j∈Ω\{i}

SjN(s)

δ
× {0}

+

 ∑
j∈Ω\{i}

SjN(s)(1− 1

δ
) + 1−

N∑
j=1

SjN(s)

× {i1}

T (iλ, s) =
∑

j∈Ω\{i}

SjN(s)

δ
× {i(λ− 1)}

+

SiN(s) +
∑

j∈Ω\{i}

SjN(s)(1− 1

δ
) + 1−

N∑
j=1

SjN(s)

× {iλ}
while for k = 2, 3, · · · , λ− 1,

T (ik, s) = SiN(s)× {i(k + 1)}+
∑

j∈Ω\{i}

SjN(s)

δ
× {i(k − 1)}

+

 ∑
j∈Ω\{i}

SjN(s)(1− 1

δ
) + 1−

N∑
j=1

SjN(s)

× {ik}
Finally, for m > Nλ, T (m, s) = m for all s. Restricting the initial memory state to

one of 0, 11, 12, · · · , 1λ, 21, 22, · · · , 2λ, · · · , Nλ, the DM will never transit to memory

states m > Nλ.

Before I prove the proposition, it would be useful to discuss the interpretation of

the updating mechanism. It could be interpreted as a two-steps transition rule that

involving first labeling the signal as supporting one of the states in Ω or not support-

ing any states, and then transiting based on the label of the signal. In particular,

upon receiving a signal s, the DM labels it as supporting state ω with probabil-

ity SωN(s) for all ω ∈ Ω and labels it as supporting no state with the remaining

probability.

Next, the transition rule based on the labeling could be interpreted as the DM

tracks only the favorable action and his confidence level of that action ranging from

1 to λ, as mentioned in the main text. Say at some period t the favorable action of

36Such {Si
N}Ni=1 exists as shown in the second part of lemma C.1.
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the DM is ω, he revises his confidence level one unit upwards if he receives a signal

supporting state ω (belief-confirming signal); he revises his confidence level one unit

downwards with probability 1
δ
< 1 if he receives a signal supporting other states

(belief-challenging signal); in all other cases he does not revise his confidence level.

It therefore can be interpreted as a learning algorithm with a particular (stochastic)

definition of belief-confirming or belief-challenging signals, and under-reaction to

belief challenging signals.

Now I compute the stationary probability distribution µω
N . Fix the state ω, in

the stationary probability distribution, we have at the two extreme memory states

in branch ω′, i.e., memory states ω′λ and ω′(λ− 1),

µωNω′(λ−1)F
ω
N(Sω

′

N ) = µωNω′λ
1

δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N )

µωNω′(λ−1) = µωNω′λ

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

]−1

for all ω′. That is, in the stationary distribution, the probability mass that enters

memory state ω′λ equals that leaves it. It also implies at memory state ω′(λ− 1),

µωNω′λ
1

δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) + µωNω′(λ−2)F
ω
N(Sω′) = µωNω′(λ−1)

[
1

δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) + F ω
N(Sω

′

N )

]

µωNω′(λ−2)F
ω
N(Sω

′

N ) = µωNω′(λ−1)

1

δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N )

µωNω′(λ−2) = µωNω′(λ−1)

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

]−1

Repeating the same procedures implies that for all k = 1, · · · , λ

µωNω′k = µωNω′λ

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

]−(λ−k)

(C.3)

and

µωN0 = µωNω′λ

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

]−λ
(C.4)

As
∑N

ω′=1

∑λ
k=1 µ

ω
Nω′k + µωN0 = 1, we have

µωNωλ

λ∑
k=1

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−(λ−k)

+ µωNωλ

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−λ

+ µωNωλ

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−λ ∑
ω′ 6=ω

λ∑
k=1

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

](λ−k)

= 1 (C.5)
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The two inequalities in lemma C.1 imply that fixing N , as λ→∞,

µωNωλ

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−λ
+

µωNωλ

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−λ ∑
ω′ 6=ω

λ∑
k=1

[
δF ω

N(Sω
′

N )∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N )

](λ−k)

→ 0 (C.6)

Thus,
λ∑
k=1

µωNωk = µµNωλ

λ∑
k=1

[
δF ω

N(SωN)∑
ω′′ 6=ω F

ω
N(Sω

′′
N )

]−(λ−k)

→ 1 (C.7)

for all ω and the asymptotic utility loss of the proposed non-ignorant updating

mechanism is 0, which proves limλ→∞ L
∗
NM = 0.

C.2 Proof of proposition 2

Proof. I show that for all ε > 0, there exists a sequence of updating mechanism with

utility loss converges to smaller than ε as N,M → ∞. First, by assumption 4’, for

all ε
ū
> 0, there exists an ξ > 0 and a sequence of subset of states Nξ such that

limN→∞

(∑
ω∈Nξ p

ω
N

)
> 1− ε

ū
and

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

− log

∫
fωN(s)fω

′
N (s)ds√∫

(fωN(s))2ds
√∫

(fω
′

N (s))2ds

 > ξ

Before proving the proposition, I first prove the following lemma for (SωN)Nω=1 defined

in equation (C.2).

Lemma C.2. For ε
ū
> 0, there exists an ξ̃ > 0, a sequence of δN > 1 and a sequence

of subset of states Nξ with limN→∞

(∑
ω∈Nξ p

ω
N

)
> 1− ε

ū
such that

δNF
ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

> 2 for all ω, ω′ ∈ Ω and N ;

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

δNF
ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

δNF
ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

> 1 + ξ̃.

(C.8)

Proof. As F ω
N(Sω

′
N ) > 0 for all ω, ω′, there always exists a δN such that the first
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inequality of equation (C.8) holds. To prove the second inequality, note that

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

δNF
ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

δNF
ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

≥ lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

F ω
N(SωN)

F ω
N(Sω

′
N )

= lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

√∫
(fωN(s))2ds

√∫
(fω

′
N (s))2ds∫

fωN(s)fω
′

N (s)ds

> exp (ξ)

=1 + ξ̃

(C.9)

where first inequality of equation (C.9) is implied by the fact that F ω
N(SωN) ≥ F ω

N(Sω
′

N )

and thus
∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )∑

ω′′ 6=ω F
ω
N (Sω

′′
N )
≥ 1.

Now consider a sequence of “star” updating mechanism described in the proof of

proposition 1, but include only states in Nξ, i.e., there are only branches correspond

to actions in Nξ and exists no m ∈ M such that d(m) = ω′ for ω′ /∈ Nξ. As in the

proof of proposition 1, I compute the stationary distribution under state ω ∈ Nξ:

lim
N,M→∞

{
µωNωλ

λ∑
k=1

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−(λ−k)

+ µωNωλ

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ

+ µωNωλ

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ ∑
ω′∈Nξ\{ω}

λ∑
k=1

[
δNF

ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

](λ−k)}
= 1 (C.10)

As limN,M→∞
M
N

= ∞, limN,M→∞ λ = ∞. Given the first inequality of lemma C.2,
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µωNωλ

[
δNF

ω
N (SωN )∑

ω′′ 6=ω F
ω
N (Sω

′′
N )

]−λ
→ 0 as λ→∞. On the other hand,

lim
N,λ→∞

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ ∑
ω′∈Nξ\{ω}

λ∑
k=1

[
δNF

ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

](λ−k)

= lim
N,λ→∞

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ ∑
ω′∈Nξ\{ω}

[
δNF

ω
N (Sω

′
N )∑

ω′′ 6=ω′ F
ω
N (Sω

′′
N )

]λ
− 1

δFωN (Sω
′

N )∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )
− 1

≤ lim
N,λ→∞

∑
ω′∈Nξ\{ω}


 δNF

ω
N (Sω

′
N )∑

ω′′ 6=ω′ F
ω
N (Sω

′′
N )

δNF
ω
N (SωN )∑

ω′′ 6=ω F
ω
N (Sω

′′
N )


λ

−

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ
≤ lim

N,λ→∞

∑
ω′∈Nξ\{ω}

(1 + ξ̃)−λ

≤ lim
N,λ→∞

N(1 + ξ̃)−λ

where the first inequality is implied by the first inequality in lemma C.2. As (1+ξ̃)−λ

converges to 0 exponentially and N converges to infinite linearly, limN,λ→∞N(1 +

ξ̃)−λ = 0. To see it formally, note that N = O(Mh) with h < 1 and λ = M
N

implies

that N = O(λ
h

1−h ) where h
1−h ∈ (0,∞). We have

lim
λ→∞

λ
h

1−h

(1 + ξ̃)λ
= lim

λ→∞

h
1−hλ

h
1−h−1

(log(1 + ξ̃))(1 + ξ̃)λ

= lim
λ→∞

h
1−h( h

1−h − 1)λ
h

1−h−2

(log(1 + ξ̃))2(1 + ξ̃)λ

· · ·

= 0

Thus,

0 ≤ lim
N,λ→∞

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−λ ∑
ω′∈Nξ\{ω}

λ∑
k=1

[
δNF

ω
N(Sω

′
N )∑

ω′′ 6=ω′ F
ω
N(Sω

′′
N )

](λ−k)

≤ lim
N,λ→∞

N(1 + ξ̃)−λ = 0

and limN,λ→∞

[
δNF

ω
N (SωN )∑

ω′′ 6=ω F
ω
N (Sω

′′
N )

]−λ∑
ω′∈Nξ\{ω}

∑λ
k=1

[
δNF

ω
N (Sω

′
N )∑

ω′′ 6=ω′ F
ω
N (Sω

′′
N )

](λ−k)

= 0, which

implies

lim
N,λ→∞

λ∑
k=1

µωNωk = lim
N,λ→∞

µµNωλ

λ∑
k=1

[
δNF

ω
N(SωN)∑

ω′′ 6=ω F
ω
N(Sω

′′
N )

]−(λ−k)

= 1 (C.11)
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for all ω ∈ Nξ. As limN→∞
∑

ω∈Nξ p
ω
N > 1 − ε

ū
, the asymptotic utility loss of the

proposed non-ignorant updating mechanism is bounded above by ū× ε
ū

= ε.

C.3 Proof of corollary 1

Proof. Note that an ignorant updating mechanism induces utility loss weakly greater

than minω u
ω
Np

ω
N which is invariant in M . On the other hand, as shown in proposi-

tion 1, L∗NM converges to 0 as M →∞. It implies there exists some big enough M̄

such that for M > M̄ , L∗NM < minω u
ω
Np

ω
N . Consider ε < minω u

ω
Np

ω
N − L∗NM̄ , if an

updating mechanism T ignores some state ω′, for we have for M > M̄

LN(T ) ≥ uω
′

N p
ω′

N ≥ min
ω
uωNp

ω
N > L∗NM̄ + ε

which proves the result.

C.4 Proof of corollary 2

Proof. Suppose in contrary the sequence of updating mechanism TN ignores strictly

more than ε
u

measures of states at the limit. Denoted the set of states that is ignored

by Ñ , the utility loss is

lim
N,M→∞

LN(TN) ≥ lim
N→∞

∑
ω∈Ñ

uωNp
ω
N ≥ u lim

N→∞

∑
ω∈Ñ

pωN > u
ε

u
= ε = lim

N,M→∞
L∗NM + ε

which proves the result.

C.5 Proof of corollary 3

Proof. By proposition 1, we have for all ω

lim
M→∞

lim
ε→0

lim
t→∞

PrN(aIt = ω | ω) = 1 for I = A,B.

which proves the result.

C.6 Proof of corollary 4

Proof. By proposition 2, we have for individual I:

lim
N,M→∞

lim
ε→0

lim
t→∞

N∑
ω=1

[
1

{
lim
t→∞

PrN(aIt = ω | ω) = 1
}
pωI

]
= 1

which is equivalent to

lim
N,M→∞

lim
ε→0

lim
t→∞

N∑
ω=1

[
1

{
lim
t→∞

PrN(aIt = ω | ω) < 1
}
pωI

]
= 0,
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i.e., individual I would only take sub-optimal actions in probability 0 events mea-

sured by (pωNI)
N
ω=1. As limN→∞ p

ω
NA > 0 if and only if limN→∞ p

ω
NB > 0 for all ω, com-

bined with assumption 2’ implies that individual A and B agree on the probability 0

events. That is, for any sequence of subset of states N̂ where limN→∞
∑

ω∈N̂ p
ω
NA = 0,

we have limN→∞
∑

ω∈N̂ p
ω
NB = 0, which implies the result.

C.7 Robustness of the results in small world to updating

mistakes

In below I show that the behavior implications is small world, i.e., learning is close

to Bayesian, and that disagreement does not persist, hold even when individuals

make “updating mistakes”. In other words, the results are robust to individuals’

limited ability to design and follow an “optimal” updating mechanism.

Consider two individuals A and B. Individual A adopts the star updating mech-

anism described in the proof of proposition 1 while individual B “attempts” to adopt

the same updating mechanism but makes local mistakes as he randomly transits to

neighbor memory states with some probability γ ∈ (0, 1). Formally, the transition

rule of individual B, denoted as T ′(m, s), is as follows:

T ′(0, s) = (1− γ)×T (0, s) +
N∑
j=1

γ

N
× {j1}

T ′(i1, s) = (1− γ)×T (i1, s) +
γ

2
× {i2}+

γ

2
× {0}

T ′(iλ, s) = (1− γ)×T (iλ, s) + γ × {i(λ− 1)}

while for k = 2, 3, · · · , λ− 1,

T ′(ik, s) = (1− γ)×T (ik, s) +
γ

2
× {i(k − 1)}+

γ

2
× {i(k + 1)}

where T (m, s) is defined in the proof of proposition 1. Such updating mistakes

could be induced by memory imperfection, i.e., the DM’s memory state is subject

to local fluctuations, or imperfect perception on signals, e.g., the DM may mistakenly

perceive any signal as a signal that support state ω.

Proposition C.1. Consider individual A who adopts the star updating mechanism

and individual B who makes local mistakes with some probability γ ∈ (0, 1), char-

acterized by T ′(m, s). Fix a finite N , for all γ ∈ (0, 1), utility loss of individual B

converges to 0 as M →∞, i.e.,

lim
M→∞

LN(T ′) = 0.

Individual A and B are bound to agree in small worlds, i.e., for all (uωNA, p
ω
NA, f

ω
NA)Nω=1,
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(uωNB, p
ω
NB, f

ω
NB)Nω=1, fixing N and M →∞,

lim
M→∞

lim
ε→0

lim
t→∞

PrN(aAt = aBt | ω) = 1 for all ω.

Proof. The proof follows closely the proof of proposition 1. For individual B, fixing

the state ω, in the stationary probability distribution, we have at the two extreme

memory states in branch ω′,

µωNω′λ

[
1− γ
δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) + γ

]
= µωNω′(λ−1)

[
(1− γ)F ω

N(Sω
′

N ) +
γ

2

]

µωNω′(λ−1) = µωNω′λ

[
(1− γ)F ω

N(Sω
′

N ) + γ
2

1−γ
δ

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ) + γ

]−1

for all ω′. Similarly, at memory state ω′(λ− 1),

µωNω′λ

[
1− γ
δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) + γ

]
+ µωNω′(λ−2)

[
(1− γ)F ω

N(Sω
′

N ) +
γ

2

]
= µωNω′(λ−1)

[
1− γ
δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) + (1− γ)F ω
N(Sω

′

N ) + γ

]

µωNω′(λ−2)

[
(1− γ)F ω

N(Sω
′

N ) +
γ

2

]
= µωNω′(λ−1)

[
1− γ
δ

∑
ω′′ 6=ω′

F ω
N(Sω

′′

N ) +
γ

2

]

µωNω′(λ−2) = µωNω′(λ−1)

[
(1− γ)F ω

N(Sω
′

N ) + γ
2

1−γ
δ

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ) + γ

2

]−1

Repeating the same procedures implies that for all k = 1, · · · , λ− 1

µωNω′k = µωNω′λ

[
(1− γ)F ω

N(Sω
′

N ) + γ
2

1−γ
δ

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ) + γ

]−1 [
(1− γ)F ω

N(Sω
′

N ) + γ
2

1−γ
δ

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ) + γ

2

]−(λ−k−1)

(C.12)

and

µωN0 = µωNω′λ

[
(1−γ)FωN (Sω

′
N )+ γ

2
1−γ
δ

∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )+γ

]−1 [
(1−γ)FωN (Sω

′
N )+ γ

2
1−γ
δ

∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )+ γ

2

]−(λ−2) [
(1−γ)FωN (Sω

′
N )+ γ

N
1−γ
δ

∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )+ γ

2

]
(C.13)

Note that for all γ ∈ (0, 1)

(1− γ)F ω
N(SωN) + γ

2
1−γ
δ

∑
ω′′ 6=ω F

ω
N(Sω

′′
N ) + γ

2

> 1.

(1− γ)F ω
N(SωN) + γ

2
1−γ
δ

∑
ω′′ 6=ω F

ω
N(Sω

′′
N ) + γ

2

>
(1− γ)F ω

N(Sω
′

N ) + γ
2

1−γ
δ

∑
ω′′ 6=ω F

ω
N(Sω

′′
N ) + γ

2

which is the analogue of lemma C.1. Then following the same steps in the proof of

proposition 1 proves the result.

Next I prove the analogue result in the case where N,M →∞ and N = O(Mh)

where h < 1. Assume that individual A adopts a star updating mechanism with a
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sequence of δN that satisfies

(1− γ)F ω
N(Sω

′
N ) + γ

2
1−γ
δN

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ) + γ

2

> 2 for all ω, ω′ ∈ Ω and N .

Fixing γ ∈ (0, 1), such sequence of δN always exists as F ω
N(Sω

′
N ) > 0 for all ω, ω′ ∈ Ω

and N . It also implies that δN goes to ∞ and

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

(1−γ)FωN (SωN )+ γ
2

1−γ
δN

∑
ω′′ 6=ω F

ω
N (Sω

′′
N )+ γ

2

(1−γ)FωN (Sω
′

N )+ γ
2

1−γ
δN

∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )+ γ

2

= lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

(1−γ)FωN (SωN )+ γ
2

(1−γ)
∑
ω′′ 6=ω F

ω
N (Sω

′′
N )+

γδN
2

(1−γ)FωN (Sω
′

N )+ γ
2

(1−γ)
∑
ω′′ 6=ω′ F

ω
N (Sω

′′
N )+

γδN
2

≥ lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

F ω
N(SωN) + γ

2(1−γ)

F ω
N(Sω

′
N ) + γ

2(1−γ)

where the last inequality is implied by the fact that
∑

ω′′ 6=ω F
ω
N(Sω

′′
N ) ≤

∑
ω′′ 6=ω′ F

ω
N(Sω

′′
N ).

In lemma C.2, we know that for all ε
u
> 0 there exists ξ̃ > 0 and a sequence of subset

of state Nξ with limN→∞

(∑
N∈Nξ p

ω
N

)
> 1− ε

u
such that

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

F ω
N(SωN)

F ω
N(Sω

′
N )

> 1 + ξ̃.

Thus, fixing γ < 1, there also exists some ˜̃ξ > 0 such that

lim
N→∞

inf
ω,ω′∈Nξ;ω′ 6=ω

F ω
N(SωN) + γ

2(1−γ)

F ω
N(Sω

′
N ) + γ

2(1−γ)

> 1 + ˜̃ξ.

Then following the same steps in the proof of proposition 2 gives the following result.

Proposition C.2. Consider individual A who adopts the star updating mechanism

and individual B who makes local mistakes with some probability γ ∈ (0, 1), charac-

terize by T ′(m, s). Suppose N,M →∞ and N = O(Mh) where h < 1,

lim
N,M→∞

LN(T ′) = 0.

Moreover, the two individuals are almost bound to agree asymptotically in small

worlds if they agree on the probability 0 events. For all (uωNA, p
ω
NA, f

ω
NA)Nω=1 and

(uωNB, p
ω
NB, f

ω
NB)Nω=1 such that limN→∞ p

ω
NA > 0 if and only if limN→∞ p

ω
NB > 0 for

all ω, then

lim
N,M→∞

lim
ε→0

∑
ω

[
1

{
lim
t→∞

PrN(aAt = aBt | ω) = 1
}
pωNI

]
= 1 for I = A,B.

40



The result illustrates the robustness of agreement in small world. In particu-

lar, even if the individual makes local mistakes with probability close to 1, he will

(almost) learn perfectly the true state of the world asymptotically. Combining corol-

lary 3, 4 and proposition C.1 and C.2, we therefore expect disagreement to vanish

over time in small world among different individuals with different prior beliefs,

abilities of information acquisition or abilities to adopt an “good” belief updating

mechanism.

C.8 Proof of proposition 3

Proof. When N and M is finite, consider two states ω, ω′, with similar argument in

Hellman and Cover (1970), we have

Υωω′

N ≤ (l
ωω′

N l
ω′ω

N )M−1

min
m∈Mω′

µωNm
µω
′

Nm

≥ (l
ωω′

N l
ω′ω

N )−(M−1) max
m∈Mω

µωNm
µω
′

Nm

where l
ωω′

N = sups
fωN (s)

fω
′

N (s)
. Suppose the DM chooses action ω in state ω with proba-

bility 1− ε and chooses action ω in state ω′ with probability ε′, i.e.,∑
m∈Mω

µωNm = 1− ε and
∑
m∈Mω

µω
′

Nm = ε′.

This implies that min maxm∈Mω
µωNm
µω
′
Nm

= 1−ε
ε′

and

min
m∈Mω′

µωNm
µω
′

Nm

≥ (l
ωω′

N l
ω′ω

N )−(M−1) 1− ε
ε′

.

Moreover, as
∑

m∈Mω′ µωNm +
∑

m∈Mω µωNm ≤ 1, we have
∑

m∈Mω′ µωNm ≤ ε and

ε

maxm∈Mω′ µω
′

Nm

≥ min
m∈Mω′

µωNm
µω
′

Nm

≥ (l
ωω′

N l
ω′ω

N )−(M−1) 1− ε
ε′

max
m∈Mω′

µω
′

Nm ≤ (l
ωω′

N l
ω′ω

N )M−1 εε′

1− ε

As (l
ωω′

N l
ω′ω

N )M−1 is bounded above, for ε and ε′ small enough, we must have

∑
m∈Mω′

µω
′

Nm < M max
m∈Mω′

µω
′

Nm < M(l
ωω′

N l
ω′ω

N )M−1 εε′

1− ε
< 1.

Thus, if the DM chooses ε and ε′ close to 0, we must have
∑

m∈Mω′ µω
′

Nm close to 0

and the utility loss is bigger than uω
′

N p
ω′
N . Therefore, L∗ > 0.

To prove the second part of the proposition, note that the DM can always “throw

away” memory states. Formally, consider an updating mechanism (T , d) with M ,
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and suppose the DM’s memory capacity increases to M ′ > M . He can design an

updating mechanism (T ′, d′) with T ′(m, s) = T (m, s) and d′(m) = d(m) for all

m ≤M . By choosing an initial memory state in m ≤M , the DM will never transit

to memory states m > M . The stationary distribution and thus utility loss does not

change. Therefore, the DM can always secure a weakly lower L∗ when M increases,

i.e., L∗ weakly decreases in M .

C.9 Proof of proposition 4

Proof. First, note that for limN,M→∞ L
∗
NM = 0, we must have

lim
N,M→∞

∑
m∈Mω

µωNm = 1

for almost all ω, i.e., there must exists a sequence of subset of states N̂ where

limN→∞
∑

ω∈N̂ p
ω
N = 1 and

lim
N,M→∞

∑
m∈Mω

µωNm = 1.

for all ω ∈ N̂ . Moreover, assumption 2’ implies that there must exists a sequence of

subset of states N̂ where limN→
|N̂ |
N

= 1 and

lim
N,M→∞

∑
m∈Mω

µωNm = 1,

for all ω ∈ N̂ . That is, the DM chooses the optimal action in almost all states,

measured in both prior probability or in fraction. It implies that for all ω in N̂ ,

there must exist a set of memory state M̂ω ⊆Mω such that

lim
N,M→∞

∑
m∈M̂ω

µωNm = 1

lim
N,M→∞

∑
m∈M̂ω

µω
′

Nm = 0 for all ω′ ∈ N̂ \ {ω}

lim
N,M→∞

max
m∈M̂ω

µωNm
µω
′

Nm

=∞ for all ω′ ∈ N̂ \ {ω}

(C.14)

In the following I prove that for equation (C.14) to hold, M
N

has to go to ∞. First

consider an irreducible automaton. Fix a ω′ ∈ N̂ \ {ω}, without loss of generality

rearrange the memory states such that
µωNm
µω
′
Nm

is weakly decreasing in m. By lemma 2
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of Hellman and Cover (1970), we have for all m < M ,

µωN(m+1)

µω
′

N(m+1)

≥ (l
ωω′

N l
ω′ω

N )−1µ
ω
Nm

µω
′

Nm

≥ ς2µ
ω
Nm

µω
′

Nm

.

(C.15)

As there must exists some m with
µωNm
µω
′
Nm

≤ 1, if max
µωNm
µω
′
Nm

=
µωN1

µω
′
N1

> K, equation (C.15)

implies that
µωNm′

µω
′

Nm′
≥ ς2(m′−1)µ

ω
N1

µω
′

N1

> ς2(m′−1)K

and ς2(m′−1)K ≥ 1 for all m′ − 1 ≤ logK
2 log(ς)−1 . In other words, there must exists

at least logK
2 log(ς)−1 + 1 memory states with a state ω − ω′ likelihood ratio

µωNm
µω
′
Nm

≥ 1.

Repeating the same analysis for other ω′′ ∈ N̂ \{ω} implies that if max
µωNm
µω
′′
Nm

> K for

all ω′′ ∈ N̂ \ {ω′}, there must exists at logK
2 log(ς)−1 + 1 memory states with a likelihood

ratio minω′∈N̂
µωNm
µω
′
Nm

≥ 1.

With similar arguments, if max
µωNm
µω
′
Nm

> K for all ω ∈ N̂ and all ω′ ∈ N̂ \ {ω}, M

|N̂ |

must be weakly greater than logK
2 log(ς)−1 + 1. It implies that M

|N̂ | goes to ∞ as K goes

to ∞. It contradicts the fact that limN,M→∞
M

|N̂ | = limN,M→∞
M
N
<∞ in big worlds.

Now I analysis the case of reducible automatons. Denote the recurrent commu-

nicating classes as R1, · · · ,Rr, and the set of transient memory states as R0. The

analysis above applies in the cases where there is only one recurrent communicating

class or where the initial memory state is in one of the recurrent communicating

classes.

Now consider the case where r > 1, i.e., there are more than one recurrent

communicating class, and the initial memory state denoted by i is in R0. I first

compute the probability of absorption by Rj under state ω, denoted by Pω
N(Rj).

Consider a new transition rule T ′ where all transitions from m ∈ R0 to another

m′ ∈ R0 is the same as before. However, T ′ differs from T that all transitions from

m ∈ R0 to m′ /∈ R0 are changed to transition from m to i. Given such a transition

rule T ′, obviously only memory states in R0 are reachable. Denote µ0ω
Nm as the

stationary distribution of this new transition rule T ′.

As is known in the theory of Markov chain (see appendix 2 of Hellman (1969)),

Pω(Rj) is given by:

Pω
N(Rj) =

∑
m∈R0

µ0ω
Nm

∑
m′∈Rj

qωmm′

Also denote µjωNm as the stationary distribution of the recurrent communicating class
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Rj, we have for m ∈ Rj

µωNm
µω
′

Nm

=
Pω

N(Rj)

Pω′
N (Rj)

× µjωNm
µjω

′

Nm

=

∑
m∈R0

µ0ω
Nm

∑
m′∈Rj

qωmm′∑
m∈R0

µ0ω′
Nm

∑
m′∈Rj

qω
′

mm′
× µjωNm
µjω

′

Nm

≤ς−2 max
m∈R0

µ0ω
Nm

µ0ω
Nm

× µjωNm
µjω

′

Nm

.

Thus, if max
µωNm
µω
′
Nm

> K, we must have

ς−2 max
m∈R0

µ0ω
Nm

µ0ω
Nm

× max
j∈{1,2,··· ,r}

max
m∈Rj

µjωNm
µjω

′

Nm

> K

Thus, when K →∞, we must have either

max
m∈R0

µ0ω
Nm

µ0ω
Nm

→∞, or;

max
j∈{1,2,··· ,r}

max
m∈Rj

µjωNm
µjω

′

Nm

→∞.

Then the result follows similar arguments in the case of irreducible automatons.

C.10 Proof of proposition 5

Proof. I first prove the first statement. Following Hellman and Cover (1970), we

have for all ω′

min
m∈M

µω
′

Nm

µωNm
≥ (l

ωω′

N l
ω′ω

N )−(M−1) max
m∈M

µω
′

Nm

µωNm

min
m∈M

µω
′

Nm

µωNm
≥ ς2(M−1) max

m∈M

µω
′

m

µωm

min
m∈M

µω
′

Nm

µωNm
≥ ς2(M−1) min max

m∈M

µω
′

Nm

µωNm

min
m∈M

µω
′

Nm

µωNm
≥ ς2(M−1)

uω
′

N p
ω′
Nµ

ω′
Nm

uωNp
ω
Nµ

ω
Nm

≥ ς2(M−1)u
ω′
N p

ω′
N

uωNp
ω
N

for all m.

Given pωN , min maxω′
uω
′
N p

ω′
N

uωNp
ω
N

= u
u

1−pωN
N−1

pωN
. Thus, when pωN is small enough, there
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exists some ω′ 6= ω

uω
′

N p
ω′
Nµ

ω′
Nm

uωNp
ω
Nµ

ω
Nm

≥ ς2(M−1) min max
ω′

uω
′

N p
ω′
N

uωNp
ω
N

≥ ς2(M−1)u

u

1−pωN
N−1

pωN
> 1 + A for all m ∈M .

for some A > 0. Suppose Mω 6= ∅, it implies that if the DM chooses action ω′ instead

of action ω memory state m, his asymptotic utility loss decreases by uω
′

N p
ω′
Nµ

ω′
Nm −

uωNp
ω
Nµ

ω
Nm ≥ 0. Thus when ε → 0, we have either Mω = ∅ or maxω′ u

ω′
N p

ω′
Nµ

ω′
Nm −

uωNp
ω
Nµ

ω
Nm → 0. As maxω′ u

ω′
N p

ω′
Nµ

ω′
Nm−uωNpωNµωNm > AuωNp

ω
Nµ

ω
Nm, maxω′ u

ω′
N p

ω′
Nµ

ω′
Nm−

uωNp
ω
Nµ

ω
Nm → 0 also implies uωNp

ω
Nµ

ω
Nm → 0 and maxω′ u

ω′
N p

ω′
Nµ

ω′
Nm → 0. Therefore,

uω
′

N p
ω′
Nµ

ω′
Nm → 0 for all ω′. As Mω is finite and uω

′
N p

ω′
N > 0 for ω′,

∑
m∈Mω µω

′
Nm → 0

for all ω′.

I now prove the second statement. Note that L∗NM is given by the following

minimization problem. Denote βωN = 1−
∑

m∈Mω µωNm,

L∗NM = min
N∑
ω=1

uωNp
ω
Nβ

ω
N

subject to (βωN)Nω=1 ∈ cl(M )

where M is the feasibility set and cl(M ) is the closure of M . As an example, when

N = M = 2, M is characterized by equation 7. We could also represent the problem

as a maximization problem:

max
N∑
ω=1

uωNp
ω
Nα

ω
N

subject to (αωN)Nω=1 ∈ cl(M̃ )

where (αωN)Nω=1 ∈ cl(M̃ ) if and only if (1− αωN)Nω=1 ∈ cl(M ).

Suppose for some (uω
′

N , p
ω′
N )Nω′=1, ε-optimal updating mechanisms must ignore

state ω as ε → 0. Denote (αω
′∗

N )Nω′=1 as the solution of the maximization problem.

It implies that αω∗N = 0 and

∑
ω′ 6=ω

uω
′

N p
ω′

Nα
ω′∗
N >

N∑
ω′=1

uω
′

N p
ω′

Nα
ω′

N

for all (αω
′

N )Nω′=1 ∈ cl(M ) where αωN > 0. Rearranging the inequality gives us

∑
ω′ 6=ω

uω
′

N p
ω′
N

uωNp
ω
N

(αω
′∗

N − αω
′

N ) > αωN .
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Now, without loss of generality assume ω 6= 1,

∑
ω′ 6=ω

ũω
′

N p̃
ω′
N

ũωN p̃
ω
N

(αω
′∗

N − αω
′

N ) =
∑
ω′ 6=ω

ũω
′

N p̃
ω′
N

ũ1
N p̃

1
N

× ũ1
N p̃

1
N

ũωN p̃
ω
N

(αω
′∗

N − αω
′

N )

=
∑
ω′ 6=ω

uω
′

N p
ω′
N

u1
Np

1
N

× ũ1
N p̃

1
N

ũωN p̃
ω
N

(αω
′∗

N − αω
′

N )

=
ũ1
N p̃

1
N

ũωN p̃
ω
N

× uωNp
ω
N

u1
Np

1
N

×
∑
ω′ 6=ω

uω
′

N p
ω′
N

u1
Np

1
N

× u1
Np

1
N

uωNp
ω
N

(αω
′∗

N − αω
′

N )

>
∑
ω′ 6=ω

uω
′

N p
ω′
N

u1
Np

1
N

× u1
Np

1
N

uωNp
ω
N

(αω
′∗

N − αω
′

N )

> αωN .

It implies that ∑
ω′ 6=ω

ũω
′

N p̃
ω′

Nα
ω′∗
N >

N∑
ω′=1

ũω
′

N p̃
ω′

Nα
ω′

N

for all (αω
′

N )Nω′=1 ∈ cl(M ) where αωN > 0. Thus ε′-optimal updating mechanisms

must ignore state ω as ε′ → 0.

C.11 Proof of proposition 6

Proof. Suppose to the contrary that there exists a sequence of subset of states Ñ

where limN→∞
|Ñ |
N

> 0 such that for all ω ∈ Ñ , the DM takes action ω with some

strictly positive probability in some state ω′ (where ω′ could be different for different

ω). Formally, it implies that for all ω ∈ Ñ

lim
N.M→∞

∑
m∈Mω

µω
′

Nm ≥ ξ > 0

for some ω′. As Mω must be finite for almost all ω measured in fraction, it implies

that there exists some Ñ ′ where limN→∞
|Ñ ′|
N

> 0 for all ω ∈ Ñ there exists some

ω′ ∈ Ω,

lim
N.M→∞

µω
′

Nm ≥ ξ′ > 0 for some m ∈Mω.

Now denote the set of ω′, the set of states of the world where the DM picks some

action ω ∈ Ñ ′ with strictly positive probability as Ñ ′′. We must have limN,M→∞
|Ñ ′′|
N

>

0. Otherwise, there must exist some ω′ ∈ Ñ ′′ such that there are infinitely many

memory states with strictly positive probability and it contradicts the fact that

limN,M→∞
∑M

m=1 µ
ω′
Nm = 1. With similar arguments, for almost all ω ∈ Ñ ′, there

must exists some m ∈ Mω such that limN,M→∞ µ
ω′
Nm ≥ ξ′ for some ω′ ∈ Ñ ′′ but

limN,M→∞ µ
ω′′
Nm = 0 for almost all states ω′′ ∈ Ñ \ {ω′}. It implies that there exists
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some sequence of subset of states ˜̃N where limN→∞
| ˜̃N |
N
> 0 such that

lim
N,M→∞

max
m

µω
′

Nm

µω
′′

Nm

=∞

for all ω′ ∈ ˜̃N and all ω′′ ∈ ˜̃N \ {ω′}. But that is proved to be impossible in the

proof of proposition 4. The result thus follows.

C.12 Proof of corollary 5

Proof. By proposition 5, if pωNA is small enough for all ω ∈ NA ⊂ N and pωNB is

small enough for all ω ∈ NB = N \ NA, individual A never picks action ω for all

ωinNA and individual B never picks action ω for all ω ∈ N \ NA. Therefore, they

must disagree with each other.

C.13 Proof of corollary 6

Proof. Consider an example where limN→∞ p
ω
N = 0 for all ω. As shown in the

proposition 6, the DM must ignore almost all actions when N,M goes to infinite.

Thus, limN,M→∞ L
∗
NM = limN→∞

∑
ω u

ω
Np

ω
N and all updating mechanism is ε-optimal

for any ε ≥ 0. Thus, if individual A adopts an updating mechanism with d(m) = 1

for all m and individual B adopts an updating mechanism with d(m) = 2 for all m,

then they must disagree with each other under all ω.

C.14 Proof of proposition 7

Proof. First, as M = 1 for individual A, his action is constant in all periods for all

signal realizations. The optimal automaton is thus M2 = M3 = ∅ and aAt = 1 for

all t. Now I characterize the(almost) optimal updating mechanism of individual B.

With some abuse of notations, denote L∗32(nn′) as optimal utility loss where the DM

chooses action n in memory state 1 and action n′ in memory state 2. Building on

results in Hellman and Cover (1970), we have

L∗32(11) =
2

3
− 2ν,

L∗32(22) = L∗32(33) =
2

3
+ ν,

L∗32(12) = L∗32(13) =
1

3
− ν +

2
√

(1 + τ)
(

1
3

+ 2ν
) (

1
3
− ν
)
−
(

2
3
− ν
)

τ
,

L∗32(23) =
1

3
+ 2ν +

2
(

1
3
− ν
)√

1 + Υ−
(

2
3
− 2ν

)
Υ

.
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where L∗32(22) = L∗32(33) > L∗32(11) ≥ L∗32(12) = L∗32(13). I first prove L∗32(12) >

L∗32(23) if and only if ν is small enough. First, L∗32(12) > L∗32(23) if and only if

4L32(12−23) = 3ν+
2(1

3
− ν)
√

1 + Υ

Υ
−

2
3
− 2ν

Υ
−

2
√

(1 + τ)(1
3

+ 2ν)(1
3
− ν)

τ
+

2
3

+ ν

τ
< 0.

When ν = 0,

44 L32(12− 23) =
2

3

(√
1 + Υ

Υ
−
√

1 + τ

τ

)
− 2

3

(
1

Υ
− 1

τ

)
.

As both
√

1+x
x

and 1
x

decreases in x, and Υ > τ , 4L32(12− 23) < 0, i.e., L∗32(12) >

L∗32(23), which by continuity proves the result.
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