31 research outputs found

    Effect of moisture on the adsorption of ammonia

    Get PDF
    The effect of moisture on the adsorption of ammonia was systematically studied using different surface materials and humidity levels. The experimental water amount fractions varied between 6 and 18,000 mu molmol(-1), and the ammonia amount fraction was 400nmolmol(-1). The investigated materials included plain 316L stainless steel and stainless steel cured with Dursan, SilcoNert 2000 and halocarbon wax coatings. Furthermore, Teflon (PTFE) and polyvinylidene difluoride (PVDF) polymer surfaces were studied. Dynamically diluted ammonia, test tubes prepared with the investigated materials, a commercial ammonia analyzer based on cavity ring-down spectroscopy, and a commercial dew-point transmitter were employed. The adsorption was assessed quantitatively using continuous flow conditions and real-time monitoring of the adsorption process. The ammonia adsorption was found to increase substantially in dry conditions for all the studied materials except PVDF. The increase was largest for plain stainless steel which was the most adsorbing material. The coatings applied on stainless steel decreased the adsorption significantly in dry conditions. Polymers PVDF and PTFE were the least-adsorbing materials. In water amount fractions between 1000 and 10,000 mu mol mol(-1), the ammonia adsorption was at its lowest. The adsorption increased again above 1% humidity levels.Peer reviewe

    Boreal fire records in Northern Hemisphere ice cores: a review

    Get PDF
    Here, we review different attempts made since the early 1990s to reconstruct past forest fire activity using chemical signals recorded in ice cores extracted from the Greenland ice sheet and a few mid-northern latitude, high-elevation glaciers. We first examined the quality of various inorganic (ammonium, nitrate, potassium) and organic (black carbon, various organic carbon compounds including levoglucosan and numerous carboxylic acids) species proposed as fire proxies in ice, particularly in Greenland. We discuss limitations in their use during recent vs. pre-industrial times, atmospheric lifetimes, and the relative importance of other non-biomass-burning sources. Different high-resolution records from several Greenland drill sites and covering various timescales, including the last century and Holocene, are discussed. We explore the extent to which atmospheric transport can modulate the record of boreal fires from Canada as recorded in Greenland ice. Ammonium, organic fractions (black and organic carbon), and specific organic compounds such as formate and vanillic acid are found to be good proxies for tracing past boreal fires in Greenland ice. We show that use of other species – potassium, nitrate, and carboxylates (except formate) – is complicated by either post-depositional effects or existence of large non-biomass-burning sources. The quality of levoglucosan with respect to other proxies is not addressed here because of a lack of high-resolution profiles for this species, preventing a fair comparison. Several Greenland ice records of ammonium consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred during the last millennium and since the last large climatic transition. Based on this review, we make recommendations for further study to increase reliability of the reconstructed history of forest fires occurring in a given region

    Final publishable JRP summary for ENV55 MetNH3 - Metrology for Ammonia in Ambient Air

    Get PDF
    This project developed reference standards and measurement techniques for traceable measurements of NH3 in air. These will enable validated high quality ammonia measurement data which will help monitor and compare NH3 levels and ensure compliance with environmental protection policies and legislation

    Boreal fire records in Northern Hemisphere ice cores: a review

    Get PDF
    Here, we review different attempts made since the early 1990s to reconstruct past forest fire activity using chemical signals recorded in ice cores extracted from the Greenland ice sheet and a few mid-northern latitude, high-elevation glaciers. We first examined the quality of various inorganic (ammonium, nitrate, potassium) and organic (black carbon, various organic carbon compounds including levoglucosan and numerous carboxylic acids) species proposed as fire proxies in ice, particularly in Greenland. We discuss limitations in their use during recent vs. pre-industrial times, atmospheric lifetimes, and the relative importance of other non-biomass-burning sources. Different high-resolution records from several Greenland drill sites and covering various timescales, including the last century and Holocene, are discussed. We explore the extent to which atmospheric transport can modulate the record of boreal fires from Canada as recorded in Greenland ice. Ammonium, organic fractions (black and organic carbon), and specific organic compounds such as formate and vanillic acid are found to be good proxies for tracing past boreal fires in Greenland ice. We show that use of other species – potassium, nitrate, and carboxylates (except formate) – is complicated by either post-depositional effects or existence of large non-biomass-burning sources. The quality of levoglucosan with respect to other proxies is not addressed here because of a lack of high-resolution profiles for this species, preventing a fair comparison. Several Greenland ice records of ammonium consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred during the last millennium and since the last large climatic transition. Based on this review, we make recommendations for further study to increase reliability of the reconstructed history of forest fires occurring in a given region

    MetNH3: Metrology for Ammonia in Ambient Air

    Get PDF
    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. Ammonia is increasingly being globally acknowledged as a key precursor to atmospheric particulate matter. The European Directive 2001/81/EC on “National Emission Ceilings for Certain Atmospheric Pollutants (NEC)” regulates ammonia emissions in the member states. However, due to the chemical characteristics of ambient ammonia traceable on-line measurements still have significant challenges in analytical technology, uncertainty, quality assurance and quality control (QC/QA). Currently the UK National Ammonia Monitoring Network uses an accredited off-line low temporal resolution and on-line denuder–IC methods at the UK Supersites. There is a need for traceable ammonia measurements which will be vitally important for identifying changes in environment policies, climate and agricultural practice. This in turn should lead to improvements emission inventory uncertainties and for providing independent verification of atmospheric model predictions. MetNH3 (EMRP Joint Research Project) has worked with SMEs in testing improved reference gas mixtures by static and dynamic gravimetric generation methods, develop and refine existing laser based optical spectrometric standards and establishing the transfer from high-accuracy standards to field applicable methods. The first results from the metrological characterisation of a commercially available cavity ring-down spectrometer (CRDS) are presented and the results from a new design “Controlled Atmosphere Test Facility (CATFAC)”, which is currently characterising the performance of diffusive samplers. The range and characteristics of instruments are discussed. The plans for a major ammonia field intercomparison in 2016 will be outlined

    Metrology for Ammonia in Ambient Air. Final publishable JRP report

    Get PDF
    This project developed reference standards and measurement techniques for traceable measurements of NH3 in air. These will enable validated high quality ammonia measurement data which will help monitor and compare NH3 levels and ensure compliance with environmental protection policies and legislation

    Representativeness and seasonality of major ion records derived from NEEM firn cores

    Get PDF
    The seasonal and annual representativeness of ionic aerosol proxies (among others, calcium, sodium, ammonium and nitrate) in various firn cores in the vicinity of the NEEM drill site in northwest Greenland have been assessed. Seasonal representativeness is very high as one core explains more than 60 % of the variability within the area. The inter-annual representativeness, however, can be substantially lower (depending on the species) making replicate coring indispensable to derive the atmospheric variability of aerosol species. A single core at the NEEM site records only 30 % of the inter-annual atmospheric variability in some species, while five replicate cores are already needed to cover approximately 70 % of the inter-annual atmospheric variability in all species. The spatial representativeness is very high within 60 cm, rapidly decorrelates within 10 m but does not diminish further within 3 km. We attribute this to wind reworking of the snow pack leading to sastrugi formation. Due to the high resolution and seasonal representativeness of the records we can derive accurate seasonalities of the measured species for modern (AD 1990–2010) times as well as for pre-industrial (AD 1623–1750) times. Sodium and calcium show similar seasonality (peaking in February and March respectively) for modern and pre-industrial times, whereas ammonium and nitrate are influenced by anthro pogenic activities. Nitrate and ammonium both peak in May during modern times, whereas during pre-industrial times ammonium peaked during July–August and nitrate during June–July

    Continuous Flow Analysis of labile iron in ice-cores

    No full text
    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N′-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ∼1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core
    corecore