16 research outputs found

    Inter-laboratory comparison of water solubility methods applied to difficult-to-test substances

    No full text
    Water solubility is perhaps the single most important physical–chemical property determining the environmental fate and effects of organic compounds. Its determination is particularly challenging for compounds with extremely low solubility, frequently referred to as “difficult-to-test” substances and having solubility’s generally less than 0.1 mg/L. The existing regulatory water solubility test for these compounds is the column elution method. Its applicability, however, is limited, to non-volatile solid or crystalline hydrophobic organic compounds. There currently exists no test guideline for measuring the water solubility of very hydrophobic liquid, and potentially volatile, difficult-to-test compounds. This paper describes a “slow-stir” water solubility methodology along with results of a ring trial across five laboratories evaluating the method’s performance. The slow-stir method was applied to n-hexylcyclohexane, a volatile, liquid hydrophobic hydrocarbon. In order to benchmark the inter-laboratory variability associated with the proposed slow-stir method, the five laboratories separately determined the solubility of dodecahydrotriphenylene, a hydrophobic solid compound using the existing column elution guideline. Results across the participating laboratories indicated comparable reproducibility with relative standard deviations (RSD) of 20% or less reported for each test compound – solubility method pair. The inter-laboratory RSD was 16% for n-hexylcyclohexane (mean 14 µg/L, n = 5) using the slow-stir method. For dodecahydrotriphenylene, the inter-laboratory RSD was 20% (mean 2.6 µg/L, n = 4) using the existing column elution method. This study outlines approaches that should be followed and the experimental parameters that have been deemed important for an expanded ring trial of the slow-stir water solubility method. [Figure not available: see fulltext.].</p

    Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models

    No full text
    Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo–larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log <i>K</i><sub>ow</sub> up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo–larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM–CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated

    In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors

    No full text
    In vivo dietary bioaccumulation experiments for 85 hydrophobic organic substances were conducted to derive the in vivo gastrointestinal biotransformation rates, somatic biotransformation rates, bioconcentration factors (BCF), and biomagnification factors (BMF) for improving methods for bioaccumulation assessment and to develop an in vivo biotransformation rate database for QSAR development and in vitro to in vivo biotransformation rate extrapolation. The capacity of chemicals to be biotransformed in fish was found to be highly dependent on the route of exposure. Somatic biotransformation was the dominant pathway for most chemicals absorbed via the respiratory route. Intestinal biotransformation was the dominant metabolic pathway for most chemicals absorbed via the diet. For substances not biotransformed or transformed exclusively in the body of the fish, the BCF and BMF appeared to be closely correlated. For substances subject to intestinal biotransformation, the same correlation did not apply. We conclude that intestinal biotransformation and bioavailability in water can modulate the relationship between the BCF and BMF. This study also supports a fairly simple rule of thumb that may be useful in the interpretation of dietary bioaccumulation tests; i.e., chemicals with a BMF<sub>L</sub> of <1 tend to exhibit BCFs based on either the freely dissolved (BCF<sub>WW,fd</sub>) or the total concentration (BCF<sub>WW,t</sub>) of the chemical in the water that is less than 5000
    corecore