11 research outputs found

    Analysing climate action plans of selected UK cities for their SDG alignment

    Get PDF
    In UK, the Climate change Act of 2008 has placed a binding target of reducing the net carbon emission in 2050 by at least 80% compared to the 1990 baseline. With a high share of urban population, the contribution of cities and urban areas towards climate change mitigation and adaptation becomes crucial. UK being a signatory to the Sustainable Development Goals (SDG) in 2016, there is a new emphasis on the sustainability of cities as well. In this paper, a preliminary analysis of climate action initiatives of three UK cities (Bristol, Leicester and Milton Keynes) and their alignment with the SDG is presented. We used a text mining approach to analyse the climate action plans and then use this to map the alignment with the SDGs. We find that climate action plans have not focused on the sustainable development goals or the SDGs and their focus remains limited mainly to mitigation activities through promotion of renewable energies at homes and in buildings and actions on transport. However, climate action plans could influence a significant number of SDGs and an integrated approach could be beneficial for the cities and their residents

    Integrating the Sustainable Development Goals (SDGs) into Urban Climate Plans in the UK and Japan: A text analysis

    Get PDF
    open access articleCities are increasingly adopting potentially sustainable climate plans. Integrating the Sustainable Development Goals (SDGs) into these plans could help stabilize the climate while generating jobs, narrowing equity gaps, fostering innovation, and delivering other sustainability benefits. Yet, how much cities are integrating the SDGs into climate plans remains poorly understood. This article shed light on this question with a text analysis of SDG “keywords” in climate plans for two British and two Japanese cities. The results revealed that none of the surveyed cities have connected climate with socioeconomic priorities covered in SDG1 (poverty), SDG8 (employment), SDG5 (gender), and SDG10 (inequalities). Meanwhile, the United Kingdom cities made more connections between climate and responsible consumption and production (SDG12) than the Japanese cities. Further, Kyoto, Japan shares a climate-SDGs linkages profile that resembles the United Kingdom cities more than Kawasaki. Though not without limitations, text analysis can facilitate the city-to-city peer learning needed to make urban climate plans sustainable within and across countries

    Single infrastructure utility provision to households: Technological feasibility study

    Get PDF
    This paper contemplates the future of utility infrastructure, and considers whether an “All-in-One” approach could supply all necessary utility services to tomorrow's households. The intention is not to propose infrastructure solutions that are currently technically feasible or justifiable, however; the objective is to present visions of future infrastructure that would only be possible with new advances in science and technology, or significant improvements and adaptations of existing knowledge and techniques. The All-in-One vision is explored using several vignettes, each of which envisions a novel, multi-functional infrastructure for serving future communities. The vignettes were conceived using imaginative exercises and brain-storming activities; each was then rooted in technological and scientific feasibility, as informed by extensive literature searches and the input of domain leaders. The vignettes tell their own stories, and we identify the challenges that would need to be overcome to make these visions into reality. The main aim of this work is to encourage radical approaches to thinking about future infrastructure provision, with a focus on rationalisation, efficiency, sustainability and resilience in preparation for the challenging times ahead. The All-in-One concept introduces the possibility of a unified and singular system for infrastructure service provision; this work seeks to explore the possibility space opened thereby

    Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options

    Get PDF
    In the UK, 87% of dwellings and 60% of non-domestic buildings that will be standing in 2050 have already been built. Therefore, the greatest energy savings and emissions reductions will be achieved through retrofit of existing buildings. This usually involves decision-making processes targeted at reducing operational energy consumption and maintenance bills. For this reason, retrofit decisions by building stakeholders are typically driven by financial considerations. However, recent trends towards environmentally conscious design and retrofit have focused on the environmental merits of these options, emphasising a lifecycle approach to emissions reduction. Building stakeholders cannot easily quantify and compare the sustainability impacts of retrofit options since they lack the resources to perform an effective decision analysis. In part, this is due to the inadequacy of existing methods to assess and compare the cost, operational performance and environmental merit of the options. Current methods to quantify these parameters are considered in isolation when making decisions about energy conservation in buildings. To effectively manage the reduction of lifecycle environmental impacts, it is necessary to link financial cost with both operational and embodied emissions. This paper presents a robust Decision Support System which integrates economic and net environmental benefits (including embodied and operational emissions) to produce optimal decisions based on marginal abatement cost methods and Pareto optimisation. The implication of the DSS within the current climate change policies is also discussed. Overall, the methodology developed provides stakeholders with an efficient and reliable decision process that is informed by both environmental and financial considerations

    Optimal Ranking of Retrofit Options for Emissions Reduction in Non-Domestic Buildings-A Review

    No full text
    Measures for reducing emissions in buildings, including renewable energy technologies, energy efficiency measures and inducements to change behaviour are widely available today. In practice, due to financial costs, project timelines and other constraints, their implementation is unlikely to be achieved in a single operation. There is therefore the need for a robust decision-making methodology with which optimal choices can be made regarding the prioritisation of the measures. Such a methodology will take into account multiple and sometimes competitive objectives such as energy consumption, financial costs, environmental impacts and the interactions of measures. This paper, written to support a poster, gives an overview of relevant literature in this field, a proposed research methodology and some thoughts on how measures of financial costs and both embodied and operational emissions can be combined into a robust way. This will allow ranking and sequencing of retrofit options to reduce emissions in non-domestic buildings in a cost-effective manner
    corecore