25 research outputs found

    Banff 2022 liver group meeting report: monitoring long term allograft health.

    Get PDF
    The Banff Working Group on Liver Allograft Pathology met in September 2022. Participantsincluded hepatologists, surgeons, pathologists, immunologists and histocompatibility specialists.Presentations and discussions focused on the evaluation of long-term allograft health, including noninvasive and tissue monitoring, immunosuppression optimisation and long-term structural changes.Potential revision of the rejection classification scheme to better accommodate and communicate lateT cell-mediated rejection patterns and related structural changes, such as nodular regenerativehyperplasia, were discussed. Improved stratification of long-term maintenance immunosuppression tomatch the heterogeneity of patient settings will be central to improving long-term patient survival.Such personalised therapeutics are in turn contingent on better understanding and monitoring ofallograft status within a rational decision-making approach, likely to be facilitated in implementationwith emerging decision support tools. Proposed revisions to rejection classification emerging fromthe meeting include incorporation of interface hepatitis and fibrosis staging. These will be opened toonline testing, modified accordingly and subject to consensus discussion leading up to the next Banffconference

    Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma

    Get PDF
    The challenges to effective drug delivery to brain tumors are twofold: (1) there is a lack of non-invasive methods of local delivery and (2) the blood-brain barrier limits systemic delivery. Intranasal delivery of therapeutics to the brain overcomes both challenges. In mouse model of malignant glioma, we observed that a small fraction of intranasally delivered neural stem cells (NSCs) can migrate to the brain tumor site. Here, we demonstrate that hypoxic preconditioning or overexpression of CXCR4 significantly enhances the tumor-targeting ability of NSCs, but without altering their phenotype only in genetically modified NSCs. Modified NSCs deliver oncolytic virus to glioma more efficiently and extend survival of experimental animals in the context of radiotherapy. Our findings indicate that intranasal delivery of stem cell-based therapeutics could be optimized for future clinical applications, and allow for safe and repeated administration of biological therapies to brain tumors and other CNS disorders

    MOESM1 of Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters

    No full text
    Additional file 1: Table S1. Hamsters treated with vehicle or differing amounts of CRAd-S-pk7 were observed for any gross pathological observations at the predetermined endpoints (Days 6, 34, and 62). Minimal gross pathological incidents occurred in any of the target organs (CNS). Non-target related pathological changes (testes and uterus) were also seen in the vehicle control groups, suggesting that these observations were unrelated to test article treatment. N = 10 hamsters per group/per time point (n = 5 male + n = 5 female) except in the sex organ groups (n = 5 male or n = 5 female per time point). In bold are isolated observations potentially influenced by CRAd-S-pk7 treatment. Table S2. Hamsters were treated with CRAd-S-pk7 adenoviral vector delivery and were sacrificed at 6, 34, and 62 days post viral vector injection for microscopic pathology observation. Analysis of adverse events associated with vector treatment in the target organs (CNS) is shown above; other organs were analyzed but not included due to lack of any significant viral vector-associated pathology. Analysis shows mild perivascular/meningeal inflammation and mild gliosis in the thalamus/cortex (in bold and shown in Fig. 7), which is largely resolved by day 62 after treatment. N = 10 hamsters per group/per time point (n = 5 male + n = 5 female)

    Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases

    No full text
    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, non-toxic targeted therapy for brain metastases. In this study, we utilized an established human neural stem cell line, HB1.F3 NSCs, and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Pre-clinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, non-toxic and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation
    corecore