7 research outputs found

    The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5

    Get PDF
    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8mNm(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8mNm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infective

    Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5

    No full text
    In order to gain an insight into the mechanism of antimicrobial peptide action, aurein 2.5 and modelin-5 were studied. When tested against Staphylococcus aureus, aurein 2.5 showed approximately 5-fold greater efficacy even though the higher net positive charge and higher helix stability shown by modelin-5 would have predicated modelin-5 to be the more effective antimicrobial. However, in the presence of S. aureus membrane mimics, aurein 2.5 showed greater helical content (75% helical) relative to modelin-5 (51% helical) indicative of increase in membrane association. This was supported by monolayer data showing that aurein 2.5 (6.6 mN m− 1) generated greater pressure changes than modelin-5 (5.3 mN m− 1). Peptide monolayers indicted that modelin-5 formed a helix horizontal to the plane of an asymmetric interface which would be supported by the even distribution of charge and hydrophobicity along the helical long axis and facilitate lysis by non-specific membrane binding. In contrast, a groove structure observed on the surface of aurein 2.5 was predicted to be the cause of enhanced lipid binding (Kd = 75 μM) relative to modelin-5 (Kd = 118 μM) and the balance of hydrophobicity along the aurein 2.5 long axis supported deep penetration into the membrane in a tilt formation. This oblique orientation generates greater lytic efficacy in high anionic lipid (71%) compared to modelin-5 (32%)

    Antimicrobial activity of aurein 2.5 against yeasts

    No full text
    Fungal infections with multiple resistance to conventional antifungals are increasingly becoming a medical problem, and there is an urgent need for new antifungal compounds with novel mechanisms of action. Here, we show that aurein 2.5, a naturally occurring peptide antibiotic, displays activity against the fungal strains: Rhodotorula rubra and Schizosaccharomyces pombe (MICs 65%) in the presence of lipid membranes derived from these organisms and showed strong propensities to penetrate (π ≥ 13 mN m-1) and lyse them (> 70%). Based on these data, we suggest that aurein 2.5 kills yeasts via membranolytic mechanisms and may act as a template for the development of therapeutically useful antifungal agents

    The impact of membrane lipid composition on antimicrobial function of an α-helical peptide

    Get PDF
    VP1, a putative α-helical antimicrobial peptide (α-AMP) inhibited growth of Bacillus subtilis and Escherichia coli at 500 μM. The peptide induced stable surface pressure changes in monolayers formed from B. subtilis native lipid extract (circa 4.5 mN m-1) but transient pressure changes in corresponding E. coli monolayers (circa 1.0 mN m-1), which led to monolayer disintegration. Synthetic lipid monolayers mimetic of the extracts were used to generate compression isotherms. Thermodynamic analysis of B. subtilis isotherms indicated membrane stabilisation by VP1 (ΔGMix 0). Destabilisation correlated with PE levels present and appeared to involve a mechanism resembling those used by tilted peptides. These data emphasise that structure/function analysis of α-AMPs must consider not only their structural characteristics but also the lipid make-up of the target microbial membrane. © 2007 Elsevier Ireland Ltd. All rights reserve

    1940–1959

    No full text

    Canada

    No full text
    corecore