488 research outputs found

    Chiral three-nucleon forces and pairing in nuclei

    Full text link
    We present the first study of pairing in nuclei including three-nucleon forces. We perform systematic calculations of the odd-even mass staggering generated using a microscopic pairing interaction at first order in chiral low-momentum interactions. Significant repulsive contributions from the leading chiral three-nucleon forces are found. Two- and three-nucleon interactions combined account for approximately 70% of the experimental pairing gaps, which leaves room for self-energy and induced interaction effects that are expected to be overall attractive in nuclei.Comment: 4 pages, 3 figure

    The neutron polaron as a constraint on nuclear density functionals

    Full text link
    We study the energy of an impurity (polaron) that interacts strongly in a sea of fermions when the effective range of the impurity-fermion interaction becomes important, thereby mapping the Fermi polaron of condensed matter physics and ultracold atoms to strongly interacting neutrons. We present Quantum Monte Carlo results for this neutron polaron, and compare these with effective field theory calculations that also include contributions beyond the effective range. We show that state-of-the-art nuclear density functionals vary substantially and generally underestimate the neutron polaron energy. Our results thus provide constraints for adjusting the time-odd components of nuclear density functionals to better characterize polarized systems.Comment: 5 pages, 3 figures; v2 corresponds to the published versio

    Isovector splitting of nucleon effective masses, ab-initio benchmarks and extended stability criteria for Skyrme energy functionals

    Get PDF
    We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry on the properties of the Skyrme energy density functional. We discuss the ability of the latter to predict observable of infinite matter and finite nuclei, paying particular attention to controlling the agreement with ab-initio predictions of the spin-isospin content of the nuclear equation of state, as well as diagnosing the onset of finite size instabilities, which we find to be of critical importance. We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme force, calling at least for an extension of its P-wave part.Comment: 17 pages, 9 figures; Minor changes, references added; Accepted for publication in Phys.Rev.

    Non-empirical pairing energy functional in nuclear matter and finite nuclei

    Full text link
    We study 1S0 pairing gaps in neutron and nuclear matter as well as in finite nuclei on the basis of microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend only weakly on approximation schemes for the normal self-energy, required in present energy-density functional calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation scheme.Comment: 14 pages, 12 figures, published versio

    Energy density functional on a microscopic basis

    Full text link
    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, on the contrary, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter Equation of State and the distinct features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Microscopic evaluation of the pairing gap

    Full text link
    We discuss the relevant progress that has been made in the last few years on the microscopic theory of the pairing correlation in nuclei and the open problems that still must be solved in order to reach a satisfactory description and understanding of the nuclear pairing. The similarities and differences with the nuclear matter case are emphasized and described by few illustrative examples. The comparison of calculations of different groups on the same set of nuclei show, besides agreements, also discrepancies that remain to be clarified. The role of the many-body correlations, like screening, that go beyond the BCS scheme, is still uncertain and requires further investigation.Comment: 21 pages,7 figures; minor modification, accepted for publication in J. Phys.

    An ab initio theory of double odd-even mass differences in nuclei

    Full text link
    Two aspects of the problem of evaluating double odd-even mass differences D_2 in semi-magic nuclei are studied related to existence of two components with different properties, a superfluid nuclear subsystem and a non-superfluid one. For the superfluid subsystem, the difference D_2 is approximately equal to 2\Delta, the gap \Delta being the solution of the gap equation. For the non-superfluid subsystem, D_2 is found by solving the equation for two-particle Green function for normal systems. Both equations under consideration contain the same effective pairing interaction. For the latter, the semi-microscopic model is used in which the main term calculated from the first principles is supplemented with a small phenomenological addendum containing one phenomenological parameter supposed to be universal for all medium and heavy atomic nuclei.Comment: 7 pages, 10 figures, Report at Nuclear Structure and Related Topics, Dubna, Russia, July 2 - July 7, 201

    Instabilities in the Nuclear Energy Density Functional

    Full text link
    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.Comment: Special issue "Open Problems in Nuclear Structure Theory" of Jour.Phys.G - accepted. 7 pages, 2 figure

    Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p

    Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe

    Get PDF
    The increasing demand for innovative forest management strategies to adapt to and mitigate climate change and benefit forest production, the so-called Climate-Smart Forestry, calls for a tool to monitor and evaluate their implementation and their effects on forest development over time. The pan-European set of criteria and indicators for sustainable forest management is considered one of the most important tools for assessing many aspects of forest management and sustainability. This study offers an analytical approach to selecting a subset of indicators to support the implementation of Climate-Smart Forestry. Based on a literature review and the analytical hierarchical approach, 10 indicators were selected to assess, in particular, mitigation and adaptation. These indicators were used to assess the state of the Climate-Smart Forestry trend in Europe from 1990 to 2015 using data from the reports on the State of Europe's Forests. Forest damage, tree species composition, and carbon stock were the most important indicators. Though the trend was overall positive with regard to adaptation and mitigation, its evaluation was partly hindered by the lack of data. We advocate for increased efforts to harmonize international reporting and for further integrating the goals of Climate-Smart Forestry into national-and European-level forest policy making
    corecore