488 research outputs found
Chiral three-nucleon forces and pairing in nuclei
We present the first study of pairing in nuclei including three-nucleon
forces. We perform systematic calculations of the odd-even mass staggering
generated using a microscopic pairing interaction at first order in chiral
low-momentum interactions. Significant repulsive contributions from the leading
chiral three-nucleon forces are found. Two- and three-nucleon interactions
combined account for approximately 70% of the experimental pairing gaps, which
leaves room for self-energy and induced interaction effects that are expected
to be overall attractive in nuclei.Comment: 4 pages, 3 figure
The neutron polaron as a constraint on nuclear density functionals
We study the energy of an impurity (polaron) that interacts strongly in a sea
of fermions when the effective range of the impurity-fermion interaction
becomes important, thereby mapping the Fermi polaron of condensed matter
physics and ultracold atoms to strongly interacting neutrons. We present
Quantum Monte Carlo results for this neutron polaron, and compare these with
effective field theory calculations that also include contributions beyond the
effective range. We show that state-of-the-art nuclear density functionals vary
substantially and generally underestimate the neutron polaron energy. Our
results thus provide constraints for adjusting the time-odd components of
nuclear density functionals to better characterize polarized systems.Comment: 5 pages, 3 figures; v2 corresponds to the published versio
Isovector splitting of nucleon effective masses, ab-initio benchmarks and extended stability criteria for Skyrme energy functionals
We study the effect of the splitting of neutron and proton effective masses
with isospin asymmetry on the properties of the Skyrme energy density
functional. We discuss the ability of the latter to predict observable of
infinite matter and finite nuclei, paying particular attention to controlling
the agreement with ab-initio predictions of the spin-isospin content of the
nuclear equation of state, as well as diagnosing the onset of finite size
instabilities, which we find to be of critical importance. We show that these
various constraints cannot be simultaneously fulfilled by the standard Skyrme
force, calling at least for an extension of its P-wave part.Comment: 17 pages, 9 figures; Minor changes, references added; Accepted for
publication in Phys.Rev.
Non-empirical pairing energy functional in nuclear matter and finite nuclei
We study 1S0 pairing gaps in neutron and nuclear matter as well as in finite
nuclei on the basis of microscopic two-nucleon interactions. Special attention
is paid to the consistency of the pairing interaction and normal self-energy
contributions. We find that pairing gaps obtained from low-momentum
interactions depend only weakly on approximation schemes for the normal
self-energy, required in present energy-density functional calculations, while
pairing gaps from hard potentials are very sensitive to the effective-mass
approximation scheme.Comment: 14 pages, 12 figures, published versio
Energy density functional on a microscopic basis
In recent years impressive progress has been made in the development of
highly accurate energy density functionals, which allow to treat medium-heavy
nuclei. In this approach one tries to describe not only the ground state but
also the first relevant excited states. In general, higher accuracy requires a
larger set of parameters, which must be carefully chosen to avoid redundancy.
Following this line of development, it is unavoidable that the connection of
the functional with the bare nucleon-nucleon interaction becomes more and more
elusive. In principle, the construction of a density functional from a density
matrix expansion based on the effective nucleon-nucleon interaction is
possible, and indeed the approach has been followed by few authors. However, to
what extent a density functional based on such a microscopic approach can reach
the accuracy of the fully phenomenological ones remains an open question. A
related question is to establish which part of a functional can be actually
derived by a microscopic approach and which part, on the contrary, must be left
as purely phenomenological. In this paper we discuss the main problems that are
encountered when the microscopic approach is followed. To this purpose we will
use the method we have recently introduced to illustrate the different aspects
of these problems. In particular we will discuss the possible connection of the
density functional with the nuclear matter Equation of State and the distinct
features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus
Section: Open Problems in Nuclear Structur
Microscopic evaluation of the pairing gap
We discuss the relevant progress that has been made in the last few years on
the microscopic theory of the pairing correlation in nuclei and the open
problems that still must be solved in order to reach a satisfactory description
and understanding of the nuclear pairing. The similarities and differences with
the nuclear matter case are emphasized and described by few illustrative
examples. The comparison of calculations of different groups on the same set of
nuclei show, besides agreements, also discrepancies that remain to be
clarified. The role of the many-body correlations, like screening, that go
beyond the BCS scheme, is still uncertain and requires further investigation.Comment: 21 pages,7 figures; minor modification, accepted for publication in
J. Phys.
An ab initio theory of double odd-even mass differences in nuclei
Two aspects of the problem of evaluating double odd-even mass differences D_2
in semi-magic nuclei are studied related to existence of two components with
different properties, a superfluid nuclear subsystem and a non-superfluid one.
For the superfluid subsystem, the difference D_2 is approximately equal to
2\Delta, the gap \Delta being the solution of the gap equation. For the
non-superfluid subsystem, D_2 is found by solving the equation for two-particle
Green function for normal systems. Both equations under consideration contain
the same effective pairing interaction. For the latter, the semi-microscopic
model is used in which the main term calculated from the first principles is
supplemented with a small phenomenological addendum containing one
phenomenological parameter supposed to be universal for all medium and heavy
atomic nuclei.Comment: 7 pages, 10 figures, Report at Nuclear Structure and Related Topics,
Dubna, Russia, July 2 - July 7, 201
Instabilities in the Nuclear Energy Density Functional
In the field of Energy Density Functionals (EDF) used in nuclear structure
and dynamics, one of the unsolved issues is the stability of the functional.
Numerical issues aside, some EDFs are unstable with respect to particular
perturbations of the nuclear ground-state density. The aim of this contribution
is to raise questions about the origin and nature of these instabilities, the
techniques used to diagnose and prevent them, and the domain of density
functions in which one should expect a nuclear EDF to be stable.Comment: Special issue "Open Problems in Nuclear Structure Theory" of
Jour.Phys.G - accepted. 7 pages, 2 figure
Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells
<p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p
Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe
The increasing demand for innovative forest management strategies to adapt to and mitigate climate change and benefit forest production, the so-called Climate-Smart Forestry, calls for a tool to monitor and evaluate their implementation and their effects on forest development over time. The pan-European set of criteria and indicators for sustainable forest management is considered one of the most important tools for assessing many aspects of forest management and sustainability. This study offers an analytical approach to selecting a subset of indicators to support the implementation of Climate-Smart Forestry. Based on a literature review and the analytical hierarchical approach, 10 indicators were selected to assess, in particular, mitigation and adaptation. These indicators were used to assess the state of the Climate-Smart Forestry trend in Europe from 1990 to 2015 using data from the reports on the State of Europe's Forests. Forest damage, tree species composition, and carbon stock were the most important indicators. Though the trend was overall positive with regard to adaptation and mitigation, its evaluation was partly hindered by the lack of data. We advocate for increased efforts to harmonize international reporting and for further integrating the goals of Climate-Smart Forestry into national-and European-level forest policy making
- …