50 research outputs found

    Macrophage IL-1β-positive microvesicles exhibit thrombo-inflammatory properties and are detectable in patients with active juvenile idiopathic arthritis

    Get PDF
    ObjectiveIL-1β is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1β-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1β secretion. The first objective of our study was to characterize IL-1β-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo. The second objective was to detect circulating IL-1β-positive MVs in JIA patients.MethodsMVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1β, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo, MVs’ ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1β-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry.ResultsTHP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1β and bioactive TF. IL-1β-positive MVs expressed P2X7 receptor and released soluble IL-1β in response to ATP stimulation in vitro. In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1β-positive MVs were detectable in plasma from 10 active JIA patients.ConclusionMVs shed from activated macrophages contain IL-1β, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Rôle des microparticules de plaque d'athérosclérose humaine dans le développement de l'athérothrombose

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis

    No full text
    Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed

    Multifaceted role of extracellular vesicles in atherosclerosis

    No full text
    International audienceExtracellular vesicles (EVs) are small vesicles released by the majority of cells in response to cell activation or death stimuli. They are grouped as small EVs or exosomes, large EVs such as microvesicles (MVs) and apoptotic bodies, resulting from distinct mechanisms of generation. EVs are released into the extracellular space, in most human biological fluids and tissues, including atherosclerotic plaques. They transport complex cargo of bioactive molecules, including proteins, lipids and genetic material and are therefore involved in pathophysiological pathways of cell-cell communication. Indeed, EVs are involved in several processes such as inflammation, coagulation, vascular dysfunction, angiogenesis and senescence, contributing to the initiation and progression of atherothrombotic diseases. Consequently, they behave as a determinant of atherosclerotic plaque vulnerability leading to major cardiovascular disorders. Over the last decade, the field of EVs research has grown, highlighting their involvement in atherosclerosis. However, limitations in both detection methodologies and standardisation have hindered implementation of EVs in the clinical settings. This review summarizes the effect of EVs in atherosclerosis development, progression and severity, with specific attention devoted to their ambivalent roles in senescence and hemostasis. This review will also highlight the role of MVs as multifaceted messengers, able to promote or to attenuate atherosclerosis progression. Finally, we will discuss the main technical challenges and prerequisites of standardization for driving EVs to the clinics and delineate their relevance as emergent biomarkers and innovative therapeutic approaches in atherosclerosis

    Cellular Origins and Thrombogenic Activity of Microparticles Isolated From Human Atherosclerotic Plaques

    Get PDF
    ObjectivesIn this study, we evaluated the cellular origins and thrombogenic potential of microparticles.BackgroundHuman atherosclerotic plaques contain submicron vesicles (microparticles) released during cell activation or apoptosis.MethodsMicroparticles were purified from plaques and platelet-free plasma from 26 patients undergoing carotid endarterectomy. Flow cytometry analysis revealed the presence of large amounts of microparticles in plaques but not in healthy vessels.ResultsMost plaque microparticles originated from leukocytes, of which 29 ± 5% were macrophages, 15 ± 3% lymphocytes, and 8 ± 1% granulocytes. Plaques microparticles also derived from erythrocytes (27 ± 4%), smooth muscle (13 ± 4%) and endothelial cells (8 ± 2%), but not from platelets. Plaques from asymptomatic and symptomatic patients showed no differences in microparticle origins. Microparticles were at least 200-fold more concentrated in plaque than in plasma. Plasma microparticles were primarily platelet-derived in contrast with those of plaque and showed no smooth muscle cell origin. Both plaque and plasma microparticles exposed tissue factor and generated thrombin, but this activity was twice as high in microparticles isolated from plaques, reflecting the thrombogenic contribution of the individual classes of microparticles.ConclusionsThese results demonstrate that microparticles are more abundant and more thrombogenic in human atherosclerotic plaques than in plasma. The different cellular origins of plaque and plasma microparticles might explain the increased thrombogenic activity of plaque microparticles

    Identification of CD146 as a novel molecular actor involved in systemic sclerosis

    Get PDF
    International audienceWe highlight for the first time that CD146/sCD146 is involved in fibrotic process during SSc. sCD146 could thus constitute a new biomarker to assess disease activity, and potentially a new target for therapeutic applications

    A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule

    Get PDF
    International audienceCD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...). In addition, it has been shown to be expressed on vascular endothelial and smooth muscle cells. Generating an antibody able to specifically recognize CD146 in cancer cells (designated as tumor CD146), but not in normal cells, would thus be of major interest for targeting tumor CD146 without affecting the vascular system. We thus generated antibodies against the extracellular domain of the molecule produced in cancer cells and selected an antibody that specifically recognizes tumor CD146. This antibody (TsCD146 mAb) was able to detect CD146-positive tumors in human biopsies and in vivo, by PET imaging, in a murine xenograft model. In addition, TsCD146 mAb antibody was able to specifically detect CD146-positive cancer microparticles in the plasma of patients. TsCD146 mAb displayed also therapeutic effects since it was able to reduce the growth of human CD146-positive cancer cells xenografted in nude mice. This effect was due to a decrease in the proliferation and an increase in the apoptosis of CD146-positive cancer cells after TsCD146-mediated internalization of the cell surface CD146. Thus, TsCD146 mAb could be of major interest for diagnostic and therapeutic strategies against CD146-positive tumors in a context of personalized medicine. www.impactjournals.com/oncotarget
    corecore