3,407 research outputs found
Metastable bound state of a pair of two-dimensional spatially separated electrons in anti-parallel magnetic fields
We propose a new mechanism for binding of two equally charged carriers in a
double-layer system subjected by a magnetic field of a special form. A field
configuration for which the magnetic fields in adjacent layers are equal in
magnitude and opposite in direction is considered. In such a field an
additional integral of motion - the momentum of the pair P arises. For the case
when in one layer the carrier is in the zero (n=0) Landau level while in the
other layer - in the first (n=1) Landau level the dependence of the energy of
the pair on its momentum E(P} is found. This dependence turns out to be
nonmonotonic one : a local maximum and a local minimum appears, indicating the
emergence of a metastable bound state of two carrier with the same sign of
electrical charge.Comment: 7 page
Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures
Measurements of resonant tunneling through a localized impurity state are
used to probe fluctuations in the local density of states of heavily doped
GaAs. The measured differential conductance is analyzed in terms of correlation
functions with respect to voltage. A qualitative picture based on the scaling
theory of Thouless is developed to relate the observed fluctuations to the
statistics of single particle wavefunctions. In a quantitative theory
correlation functions are calculated. By comparing the experimental and
theoretical correlation functions the effective dimensionality of the emitter
is analyzed and the dependence of the inelastic lifetime on energy is
extracted.Comment: 41 pages, 14 figure
Charged Many-Electron -- Single Hole Complexes in a Double Quantum Well near a Metal Plate
It has been shown that the presence of a metal plate near a double quantum
well with spatially separated electron and hole layers may lead to a drastic
reconstruction of the system state with the formation of stable charged
complexes of several electrons bound to a spatially separated hole. Complexes
of both the Fermi and the Bose statistics may coexist in the ground state and
their relative densities may be changed with the change of the electron and
hole densities. The stability of the charged complexes may be increased by an
external magnetic field perpendicular to the layers plane.Comment: to appear in Phys.Rev.Lett. 77, No.7 (1996). 4 pages, RevTeX, 1
figur
Observational consequences of the Standard Model Higgs inflation variants
We consider the possibility to observationally differentiate the Standard
Model (SM) Higgs driven inflation with non-minimal couplingto gravity from
other variants of SM Higgs inflation based on the scalar field theories with
non-canonical kinetic term such as Galileon-like kinetic term and kinetic term
with non-minimal derivative coupling to the Einstein tensor. In order to ensure
consistent results, we study the SM Higgs inflation variants by using the same
method, computing the full dynamics of the background and perturbations of the
Higgs field during inflation at quantum level. Assuming that all the SM Higgs
inflation variants are consistent theories, we use the MCMC technique to derive
constraints on the inflationnoary parameters and the Higgs boson mass from
their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs
mass measurement by the LHC and accurate determination by the PLANCK satellite
of the spectral index of curvature perturbations and tensor-to-scalar ratio
will enable to distinguish among these models. We also show that the
consistency relations of the SM Higgs inflation variants are distinct enough to
differentiate the models.Comment: 22 pages, 4 figure
Involvement of Mhc Loci in immune responses that are not Ir-gene-controlled
Twenty-nine randomly chosen, soluble antigens, many of them highly complex, were used to immunize mice of two strains, C3H and B10.RIII. Lymphnode cells from the immunized mice were restimulated in vitro with the priming antigens and the proliferative response of the cells was determined. Both strains were responders to 28 of 29 antigens. Eight antigens were then used to immunize 11 congenic strains carrying different H-2 haplotypes, and the T-cell proliferative responses of these strains were determined. Again, all the strains responded to seven of the eight antigens. These experiments were then repeated, but this time -antibodies specific for the A (AA) or E (EE) molecules were added to the culture to block the in vitro responsiveness. In all but one of the responses, inhibition with both A-specific and E-specific antibodies was observed. The response to one antigen (Blastoinyces) was exceptional in that some strains were nonresponders to this antigen. Furthermore, the response in the responder strains was blocked with A-specific, but not with E-specific, antibodies. The study demonstrates that responses to antigens not controlled by Irr genes nevertheless require participation of class II Mhc molecules. In contrast to Ir gene-controlled responses involving either the A- or the E-molecule controlling loci (but never both), the responses not Ir-controlled involve participation of both A- and E-controlling loci. The lack of Ir-gene control is probably the result of complexity of the responses to multiple determinants. There is thus no principal difference between responses controlled and those not controlled by Ir genes: both types involve the recognition of the antigen, in the context of Mhc molecules
Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries
The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs
Granulated superconductors:from the nonlinear sigma model to the Bose-Hubbard description
We modify a nonlinear sigma model (NLSM) for the description of a granulated
disordered system in the presence of both the Coulomb repulsion and the Cooper
pairing. We show that under certain controlled approximations this model is
reduced to the Bose-Hubbard (or ``dirty-boson'') model with renormalized
coupling constants. We obtain a more general effective action (which is still
simpler than the full NLSM action) which can be applied in the region of
parameters where the reduction to the Bose-Hubbard model is not justified. This
action may lead to a different picture of the superconductor-insulator
transition in 2D systems.Comment: 4 pages, revtex, no figure
Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping
We investigate the magneto-conductance (MC) anisotropy in the variable range
hopping regime, caused by quantum interference effects in three dimensions.
When no spin-orbit scattering is included, there is an increase in the
localization length (as in two dimensions), producing a large positive MC. By
contrast, with spin-orbit scattering present, there is no change in the
localization length, and only a small increase in the overall tunneling
amplitude. The numerical data for small magnetic fields , and hopping
lengths , can be collapsed by using scaling variables , and
in the perpendicular and parallel field orientations
respectively. This is in agreement with the flux through a `cigar'--shaped
region with a diffusive transverse dimension proportional to . If a
single hop dominates the conductivity of the sample, this leads to a
characteristic orientational `finger print' for the MC anisotropy. However, we
estimate that many hops contribute to conductivity of typical samples, and thus
averaging over critical hop orientations renders the bulk sample isotropic, as
seen experimentally. Anisotropy appears for thin films, when the length of the
hop is comparable to the thickness. The hops are then restricted to align with
the sample plane, leading to different MC behaviors parallel and perpendicular
to it, even after averaging over many hops. We predict the variations of such
anisotropy with both the hop size and the magnetic field strength. An
orientational bias produced by strong electric fields will also lead to MC
anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR
Charged vortices in superfluid systems with pairing of spatially separated carriers
It is shown that in a magnetic field the vortices in superfluid electron-hole
systems carry a real electrical charge. The charge value depends on the
relation between the magnetic length and the Bohr radiuses of electrons and
holes. In double layer systems at equal electron and hole filling factors in
the case of the electron and hole Bohr radiuses much larger than the magnetic
length the vortex charge is equal to the universal value (electron charge times
the filling factor).Comment: 4 page
Effect of dephasing on mesoscopic conductance fluctuations in quantum dots with single channel leads
We consider the distribution of conductance fluctuations in disordered
quantum dots with single channel leads. Using a perturbative diagrammatic
approach, valid for continuous level spectra, we describe dephasing due to
processes within the dot by considering two different contributions to the
level broadening, thus satisfying particle number conservation. Instead of a
completely non-Gaussian distribution, which occurs for zero dephasing, we find
for strong dephasing that the distribution is mainly Gaussian with
non-universal variance and non-Gaussian tails.Comment: 11 pages in REVTeX two-column format; 6 eps figures included;
submitted to Phys. Rev.
- …
