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Granular superconductors: From the nonlinear s model to the Bose-Hubbard description
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We modify a nonlinears model (NLsM) for the description of a granular disordered system in the presence
of both the Coulomb repulsion and the Cooper pairing. We show that under certain controlled approximations
the action of this model is reduced to the Ambegaokar-Eckern-Scho¨n ~AES! action, which is further reduced to
the Bose-Hubbard~or ‘‘dirty-boson’’! model with renormalized coupling constants. We obtain an effective
action which is more general than the AES one but still simpler than the full NLsM action. This action can be
applied in the region of parameters where the reduction to the AES or the Bose-Hubbard model is not justified.
This action may lead to a different picture of the superconductor-insulator transition in two-dimensional
systems.
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A wide variety of experimental data on the supe
conductor-insulator ~SI! transition in two-dimensiona
structures1–4 continues to attract acute theoretical intere
The transition can be tuned by either disorder~changing with
the thickness of a superconducting film! or magnetic field,
thus being one of the most intensely studied examples
quantum phase transitions.5 However, recent experiments1,2

have challenged the very existence of the SI transition, le
ing open the possibility that a dramatic drop in resistanc
due to the existence of a crossover to a new metallic ph
with resistance much lower than that in the normal state
to a subsequent metal-superconducting transition.1 This situ-
ation requires a reassessment of theoretical approaches
problem of dirty superconductors.

One of the ways to understand the problem of the
transition is based on the so-called Bose-Hubbard~or ‘‘dirty-
boson’’! models6 where the superconducting phase is due
the Bose condensation of charge-2e bosons~preformed Coo-
per pairs! with localized vortices while the insulating phas
is due to the Bose condensation of vortices with localiz
Cooper pairs. Another approach which captures the b
physics of granular superconductors is based on dissipa
models7 of resistively shunted charged Josephson arrays,8–11

with the emphasis on the role of dissipation and Coulo
interaction. In both groups of models,6–11 the transition is
driven by fluctuations of the phase of the order parameter
alternative approach is based on a microscopic descriptio
homogeneoussystems that incorporates both the attract
~in the Cooper channel! and repulsive electron-electron inte
action in the presence of disorder into an effective fi
theory, the nonlinears model (NLsM).12–15 The SI transi-
tion in these models is driven by fluctuations of the amp
tude rather than the phase of the order parameter, and
Cooper pairing is suppressed by the repulsive interaction
the insulating side of the transition. However, experimen
distinction between homogeneous and granular system
not as strict1 as it seemed a few years ago, and recent exp
mental observations1,2 strongly suggest that the amplitud
fluctuations in the vicinity of the SI transition are no le
important than the phase fluctuations.

The purpose of this paper is to derive microscopically
general NLsM action that takes into account fluctuations
0163-1829/2001/64~5!/054515~5!/$20.00 64 0545
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both amplitude and phase of the order parameterD, thus
encompassing all the above described approaches. We
ther show that both the Bose-Hubbard model6 and the dissi-
pative models8–11 can, in fact, be derived from this action
The two models correspond to certain simplifications ma
within the NLsM. The latter is more general and allows on
to go beyond different limitations inevitable in the derivatio
of the Bose-Hubbard and dissipative models. Note that
dissipative action8 of Ambegaokar, Eckern, and Scho¨n ~AES!
has been widely used16 in a simplified form in the context of
a normal tunnel junction. This variant of the AES action h
been very recently derived17 from the NLsM describing
electrons with the repulsive interaction moving in the pre
ence of disorder. Here we will derive both the full AES a
tion for Josephson junctions and the Bose-Hubbard mo
from the NLsM that includes both the attraction in the Co
per channel and the Coulomb repulsion. We shall use a
variant18 of the NLsM which, in our opinion, considerably
simplifies the calculations. Naturally, one can use~after a
straightforward modification for a granular system! any ver-
sion of the NLsM that includes the Cooper pairing and th
Coulomb interaction, either the original Finkelstein mode12

or a more recent model15 in Keldysh technique.
Our starting point is the standard microscopic Ham

tonian that includes ad-correlated Gaussian random pote
tial, the Coulomb interaction, and the BCS attraction. W
consider a coarse-grained version of this Hamiltonian wh
corresponds to a granular superconductor. This will allow
to separate scales of fluctuations of the amplitude and
phase of the superconducting order parameterD. Neglecting
~at some later stage! the amplitude fluctuations and makin
some further simplifications will lead eventually to th
models6,8 governed only by the phase fluctuations.

Let us stress again that the NLsM used here can be ap
plied to the simultaneous description of both the amplitu
and phase fluctuations ofD that can be quite important in th
relation to recent experiments.2 Moreover, even when focus
ing on the phase fluctuations only, the effective functiona
essentially generalized by disorder~affecting intragranular
electron motion and thus leading to a different model of
phase fluctuations! and can in principle lead to a differen
picture of the transition.
©2001 The American Physical Society15-1

https://core.ac.uk/display/78895059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


th
rd

u
at
c

-
ub

l

d
od

-
n
l
e

or
i-

nd

ly,
he

a
ra
s
o

tr

t

n

the

ac-
-

i-

to

is

efs.
ld.
,

re
the

n

e.

I. V. YURKEVICH AND IGOR V. LERNER PHYSICAL REVIEW B64 054515
The derivation of the NLsM from the Hamiltonian de-
scribed above follows the standard steps.19 First one aver-
ages the replicated imaginary-time fermionic action over
random potential. Then one employs the Hubba
Stratonovich transformation to decouple three quartic~in the
electron field! terms, corresponding to the disorder, the Co
lomb repulsion, and the BCS attraction. Finally, by integr
ing out the fermionic fields, one arrives at the effective a
tion in terms of three bosonic fields: a matrix fieldŝ that
decouples the disorder-induced ‘‘interaction,’’F that de-
couples the Coulomb repulsion, andD that decouples the
BCS attraction,

S@ŝ,D̂,F#5
pn

8tel
Tr s21

1

4l0
Tr uD̂u21

1

2
Tr FU21F

2
1

2
Tr lnF2 ĵ2 t̂1

i

2tel
ŝ1 i ~D̂1F1 ê !G .

~1!

Here the operatorê equalsi t̂3]t in imaginary time represen
tation and becomes the diagonal matrix of fermionic Mats
ara frequencies in frequency representation,ĵ is the operator
of the intragrain kinetic energy~counted from the chemica
potential!, and t̂ is the tunneling amplitude matrix~i.e., the
intergrain kinetic energy!. All the bosonic fields are define
in the space which is convenient to think of as a direct pr
uct of theN3N replica sector, the 232 spin sector, the 2
32 ‘‘time-reversal’’ sector~introduced for a correct decou
pling in the Cooper, channel for both disorder-induced a
BCS interactions!, and of them3m grain sector. The symbo
Tr refers both to a summation over all these matrix indic
and to an integration over positionr and the imaginary time
t. The matrixŝ is diagonal in grain indices~called lateri , j )
and possesses standard symmetries in all the other sect19

The pairing fieldD̂ is diagonal in the replica and grain ind
ces and inx[(r ,t), and has the following structure18 in the
time-reversal and spin sectors:

D̂~x!5uD~x!ue( i /2)x(x) t̂3t̂2
sp

^ t̂2e2( i /2)x(x) t̂3, ~2!

wheret̂a and t̂a
sp are Pauli matrices in the time-reversal a

spin sectors, respectively. The Coulomb fieldF(x) is pro-
portional to the unit matrix in all the matrix sectors. Final
in Eq. ~1! l0 andtel are the BCS coupling constant and t
elastic mean free time, respectively, andU[U(r2r 8) is the
Coulomb interaction.

The principal simplification for granular systems is th
all the fields are spatially homogeneous inside each g
when the grains are zero dimensional, i.e., their sizeL
&j,LT (j and LT are the superconducting and thermal c
herence lengths! which is equivalent touDu,T&1/terg. Then
the Coulomb interaction reduces to the capacitance ma
U21→Ci j /e2, and the tunneling matrixt̂5$t i j % depends
only on grain indices.

Now we follow the procedure of derivation of the NLsM
for dirty superconductors.18 First, we look for a saddle poin
05451
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of Eq. ~1! with respect toŝ separately for each grain. It ca
be parametrized asŝs.p.5S†LS, whereS is a certain matrix
which also diagonalizesê1F1D̂,

ê i1F i1D̂ i5Si
†l iSi , ~3!

where all the matrices are diagonal in grain indices. Then
entire saddle-point manifold is parametrized as

ŝ i5Si
†QiSi , Qi5Ui

†LUi , ~4!

where in the Matsubara representationL5diag$sgne%, and
matrix U defines the standard coset space.20 Here Q is a
degenerate solution to the saddle-point equation for the
tion ~1! when ê50, D̂, andF all vanish. The parametriza
tion ~4! ‘‘aligns’’ the field s so thatD̂ andF are taken into
account in the zeroth approximation.

Now we perform a similarity transformation with matr
ces S and S† under Tr ln in Eq.~4!. As all the fields are
spatially homogeneous inside each grain,S commutes with
the operatorĵ. Then one only needs to expand the Tr ln
the first nonvanishing orders int i j and l i , this expansion
being justified whenutu,uDu,T!1/tel!«F . Thus one arrives
at the following effective action:

S@Q,D,F#5E
0

b

dtH (
i

uD i u2

nl0d i
1(

i j

Ci j

2e2
F iF jJ

2(
i

p

2d i
Tr l iQi2

gi j
T

2 (
i j

Tr QiSi j QjSji ,

~5!

whereSi j [SiSj
† , all the fields depend ont, Tr refers to all

indices except those numerating grains,d i is mean level
spacing in thei th grain, and the tunneling conductance
defined bygi j

T [2p2ut i j u2/d id j ~which is nonzero only for
neighboring grains!. Both S andl should be found from the
diagonalization procedure in Eq.~3!.

The next step is to representSi as

Si5Vie
2( i /2)x i (t) t̂3. ~6!

This is similar to the gauge transformation suggested in R
21 and used in Ref. 17 to gauge out the Coulomb fie
However, one cannot gauge out two independent fieldsD
andF. Substituting the transformation~6! into the diagonal-
ization condition~3!, we reduce it to

ê1F̃ i1D̂ i
05Vi

1l iVi , ~7!

where D̂ i
0 is the field ~2! taken atx50 and the fieldF̃ is

given in thet representation byF̃ i[F i2
1
2 ]tx i .

Both F̃ anduDu are massive fields whose fluctuations a
strongly suppressed. It is straightforward to show that
fluctuations ofF̃ are of orderd which is much smaller than
both T and uDu. Therefore, in the mean-field approximatio
in F̃ this field can be neglected,F̃50. This condition is
nothing more than the Josephson relation in imaginary tim9
5-2
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GRANULAR SUPERCONDUCTORS: FROM THE . . . PHYSICAL REVIEW B64 054515
This locks the fluctuations of the Coulomb fieldF with the
phase fluctuations of the pairing fieldD̂,

F5 1
2 ]tx, ~8!

thus reducing the action~5! to one depending only on th
fields Q andD.

The mean-field approximation inuD i u is valid for uD i u
@d and reduces to the standard self-consistency equa
that formally follows from the variation of the action~5!
with respect touDu. In this approximation one findsuD i u to be
independent ofi and t. Thus the first term in Eq.~5! be-
comes a trivial constant, so that the action depends onQ and
x only,

S@Q,x#5(
i j

Ci j

8e2E0

b

dt]tx i]tx j2(
i

p

2d i
Tr l iQi

2
gi j

T

2 (
i j

Tr QiSi j QjSji . ~9!

Note that the fieldx in this action obeys the standard boun
ary conditionx(t1b)5x(t)mod 2p. Thus when calculat-
ing the partition function with this action, one should ta
into account different topological sectors corresponding
different winding numbers inx.

The ‘‘phase-only’’ action~9! includes neither fluctuation
of the amplitude of the order parameterD nor fluctuations of
the Coulomb field beyond the Josephson relation, Eq.~8!.
We show below that it can be reduced to the AES acti
Still, we stress that the action is more general than the A
action. Thus, in the absence of superconductivity,D[0, it
was shown17 that the former contains a correct screening
the Coulomb interaction at lowT, in contrast to the latter
This may also be important in the case whenD is much
smaller than the charging energy.

To further simplify the action~9! we note that the diago
nalization conditions~7!, in the absence of theuDu fluctua-
tions, are the same for each grain and reduced to those so
in Ref. 18,

Vee85cos
ue

2
de,e81 t̂2

sp
^ t̂2 sin

ue

2
sgne de,2e8 ,

l5diagAe21uDu2 sgne, cosue[
ueu

Ae21uDu2
. ~10!

ThenSi j in Eq. ~9! can be expressed in terms ofV as

Si j [Ve2( i /2)x i j t̂3V†, x i j [x i2x j . ~11!

Finally note that large-ueu contributions to the action~4! are
strongly suppressed, while forueu!uDu one hasl5uDuL
which suppresses fluctuations ofQ in each grain imposing
Q5L. Then, all matrices in the action~9! are diagonal in the
replica indices so that these indices become redundant.
diagonalization procedure@Eqs. ~10! and ~11!# has resolved
explicitly the matrix dependence on the time-reversal a
spin indices. This reduces the action to that depending o
on onescalar bosonic field, the phasex of the order param-
05451
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eter, whose arguments are the imaginary timet, and the
position indexi, i.e., the grain number. Indeed, the seco
term in Eq.~9! reduces to a trivial constant; evaluating th
tunneling term with the help of Eqs.~10! and~11!, we obtain

S@x#5(
i j

H Ci j

8e2E0

b

dt ]tx i ]tx j22gi j
T E

0

b

dtE
0

b

dt8

3gn
2~t2t8!cosx i j

21ga
2~t2t8!cosx i j

1J , ~12!

wherex i j (t)[x i(t)2x j (t),

x i j
6[ 1

2 @x i j ~t!6x i j ~t8!#,

and the normal and anomalous Green’s functionsgn,a ~inte-
grated over all momenta! are given by

gn~t!5T(
e

e sinet

Ae21uDu2
, ga~t!5T(

e

uDucoset

Ae21uDu2
.

~13!

This action coincides with that derived in Refs. 8–10. F
ther simplifications are possible in two limiting cases.

First, in the normal case (D50), one has in Eq.~13!

ga50, gn
2~t!5

T2

sin2 pTt
. ~14!

Then the fieldx should be substituted, according to Eq.~8!,
by 2*tdt8F(t8). This limiting case corresponds to using th
actions ~12! and ~14! in the context of a normal tunne
junction.16 This is precisely the action which has been r
cently derived from the NLsM in Ref. 17; the functional~9!
in the limit D50 is equivalent to thes model of Ref. 17.
Including the disorder-induced fluctuations~i.e., going be-
yond theQ5L approximation! allows one to obtain17 a cor-
rect low-T limit for the phase correlation function missing i
the action~12!.

The action~9! is more general than that considered in R
17: although under the mode-locking condition~8! it de-
pends only on the fieldsx andQ, the matrixSi j , Eqs.~10!
and ~11!, reduces to a simpleU(1) gauge transformation a
in Ref. 17 only in the limitD50.

The second limiting case,T!uDu, is just the limit relevant
in the context of the SI transition in granular supercondu
ors. ForT50, the summation in Eq.~13! can be substituted
by integration which yields

gn~t!5
uDu
p

K1~ uDut!, ga~t!5
uDu
p

K0~ uDut!.

This is also a good approximation for a low-temperatu
case; substituting this into Eq.~12! gives the action for the
dissipative model.9,10 Note that forut2t8u!uDu21, the main
contribution in the tunneling action~12! is given by the nor-
mal term with the corresponding kernel proportional tout
2t8u22. The Fourier transform of this would give a term o
the Caldeira-Leggett type7 proportional touvu.
5-3
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The tunneling action~12! is nonlocal int. As has been
noted in Ref. 9 for the case of one tunnel junction, for s
ficiently large capacitance the phasex i j changes slowly in
comparison withuDu21, and in the adiabatic approximatio
x(t ‘) is changed byx(t)1(t82t)]tx(t). Making such an
expansion, one obtains from Eq.~12! the following local
action:

S@x#5E
0

b

dtH(
i j

1
2 ui j

21ẋ i ẋ j2UDUgi j
T cosx i j J , ~15!

whereẋ i[]tx i and

1

uii
[

Cii

4e2
1(

j

gi j
T

uDu
31cosx i j

8
,

ui j
21[

Ci j

4e2
2

gi j
T

uDu
31cosx i j

8
.

If all the self-capacitances are equal toC with Ec}e2/C
being the charging energy, and allgi j

T 5gT, thenuii [U has
the meaning of the renormalized charging energy. Ignorin
weak dependence ofu on cosxij in the above relations, on
obtains the renormalized charging energy:

U5
Ec

11#Ecg
T/uD

. ~16!

Here the coefficient # depends on the number of next ne
bors for each grain, etc. A similar renormalization takes pl
for the next-neighbor off-diagonal energyui j . Now one can
see that on the face of it the adiabatic approximation e
ployed to obtain Eq.~15! is valid for U!uDu. However, in
the regiongT@uDu/Ec , where the charging energy~16! is
strongly renormalized, the instantonlike solutions22 may be
important. This may further reduce the region of applicab
ity for the local int action ~15!.
.

N

D

tt

.
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Finally, by introducing the operatorn̂ canonically conju-
gate to the phasex, one finds the Hamiltonian that corre
sponds to the action~15!:

Ĥ5(
i j

1
2 ui j n̂i n̂ j2uDugi j

T cos~x i2x j !. ~17!

This is just the Hamiltonian of the Bose-Hubbard mod6

which was first microscopically derived by Efetov23 in the
context of granular superconductors.

To conclude, we have derived the effective NLsM-type
action@Eq. ~5!# for a granular system with zero-dimension
grains in the presence of Coulomb interaction and superc
ductivity. This is the most general~in the present context!
action that takes into account fluctuations of both amplitu
and phase of the order parameterD. Neglecting fluctuations
of uDu and fluctuations of the Coulomb field beyond the J
sephson relation~8! reduces this action to the ‘‘phase-only
action ~9! which still contains intragranular disorder impo
tant for the correct screening foruDu small compared to the
charging energy. Neglecting this disorder further reduces
action ~9! to that of the AES model~12!. When the renor-
malized charging energy, Eq.~16!, is much smaller thanuDu,
the action~12! finally goes over to that of the Bose-Hubba
model, Eq.~17!, which is widely used for the description o
the superconductor-insulator transition.6 However, the above
estimations show that this reduction is parametrically ju
fied only for the regionEc!uDu where the transition happen
at gT!Ec /uDu!1 which corresponds to a strongly granul
system. Note finally that the most general~in the present
context! action ~5! describes both amplitude and phase flu
tuations of the order parameter, being still considerably d
ferent from the NLsM action for homogeneous systems. W
hope that using this action may eventually lead to a differ
phase diagram for granular superconductors.
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