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Granular superconductors: From the nonlinear o model to the Bose-Hubbard description
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We modify a nonlinearr model (NLoM) for the description of a granular disordered system in the presence
of both the Coulomb repulsion and the Cooper pairing. We show that under certain controlled approximations
the action of this model is reduced to the Ambegaokar-Eckernt8@eS) action, which is further reduced to
the Bose-Hubbardor “dirty-boson”) model with renormalized coupling constants. We obtain an effective
action which is more general than the AES one but still simpler than the fultMllaction. This action can be
applied in the region of parameters where the reduction to the AES or the Bose-Hubbard model is not justified.
This action may lead to a different picture of the superconductor-insulator transition in two-dimensional
systems.
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A wide variety of experimental data on the super-both amplitude and phase of the order parameterthus
conductor-insulator (Sl) transition in two-dimensional encompassing all the above described approaches. We fur-
structure$™ continues to attract acute theoretical interestther show that both the Bose-Hubbard m8deid the dissi-
The transition can be tuned by either disor@dranging with ~ pative model&™ can, in fact, be derived from this action.
the thickness of a superconducting filmr magnetic field, The two models correspond to certain simplifications made
thus being one of the most intensely studied examples oivithin the NLoM. The latter is more general and allows one
quantum phase transitiondHowever, recent experiments  to go beyond different limitations inevitable in the derivation
have challenged the very existence of the Sl transition, leawef the Bose-Hubbard and dissipative models. Note that the
ing open the possibility that a dramatic drop in resistance islissipative actiofiof Ambegaokar, Eckern, and Seh(AES)
due to the existence of a crossover to a new metallic phadeas been widely uséllin a simplified form in the context of
with resistance much lower than that in the normal state ané normal tunnel junction. This variant of the AES action has
to a subsequent metal-superconducting transitihis situ-  been very recently derivétl from the NLoM describing
ation requires a reassessment of theoretical approaches to thlectrons with the repulsive interaction moving in the pres-
problem of dirty superconductors. ence of disorder. Here we will derive both the full AES ac-

One of the ways to understand the problem of the Stion for Josephson junctions and the Bose-Hubbard model
transition is based on the so-called Bose-Hubljarddirty- from the NLoM that includes both the attraction in the Coo-
boson”) model§ where the superconducting phase is due toper channel and the Coulomb repulsion. We shall use a new
the Bose condensation of charge4#osons(preformed Coo-  variant® of the NLo-M which, in our opinion, considerably
per pair$ with localized vortices while the insulating phase simplifies the calculations. Naturally, one can uséter a
is due to the Bose condensation of vortices with localizedstraightforward madification for a granular sysjeamy ver-
Cooper pairs. Another approach which captures the basision of the NLoM that includes the Cooper pairing and the
physics of granular superconductors is based on dissipativ@oulomb interaction, either the original Finkelstein md@el
modelg of resistively shunted charged Josephson arfa’s, or a more recent modeélin Keldysh technique.
with the emphasis on the role of dissipation and Coulomb Our starting point is the standard microscopic Hamil-
interaction. In both groups of modéis! the transition is tonian that includes @-correlated Gaussian random poten-
driven by fluctuations of the phase of the order parameter. Atial, the Coulomb interaction, and the BCS attraction. We
alternative approach is based on a microscopic description afonsider a coarse-grained version of this Hamiltonian which
homogeneousystems that incorporates both the attractivecorresponds to a granular superconductor. This will allow us
(in the Cooper channeand repulsive electron-electron inter- to separate scales of fluctuations of the amplitude and the
action in the presence of disorder into an effective fieldphase of the superconducting order paramateeglecting
theory, the nonlineas- model (NLoM).*2~*®The SI transi-  (at some later stagehe amplitude fluctuations and making
tion in these models is driven by fluctuations of the ampli-some further simplifications will lead eventually to the
tude rather than the phase of the order parameter, and tmeodel§® governed only by the phase fluctuations.

Cooper pairing is suppressed by the repulsive interaction on Let us stress again that the MM used here can be ap-
the insulating side of the transition. However, experimentaplied to the simultaneous description of both the amplitude
distinction between homogeneous and granular systems &nd phase fluctuations d&f that can be quite important in the
not as strictas it seemed a few years ago, and recent experielation to recent experimertsvioreover, even when focus-
mental observatiod€ strongly suggest that the amplitude ing on the phase fluctuations only, the effective functional is
fluctuations in the vicinity of the Sl transition are no lessessentially generalized by disord@ffecting intragranular
important than the phase fluctuations. electron motion and thus leading to a different model of the

The purpose of this paper is to derive microscopically aphase fluctuationsand can in principle lead to a different

general NloM action that takes into account fluctuations of picture of the transition.
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The derivation of the N&M from the Hamiltonian de-
scribed above follows the standard stépgirst one aver-
ages the replicated imaginary-time fermionic action over th
random potential. Then one employs the Hubbard
Stratonovich transformation to decouple three quditiche

electron field terms, corresponding to the disorder, the Cou-
lomb repulsion, and the BCS attraction. Finally, by integrat-

e
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of Eq. (1) with respect tor separately for each grain. It can
be parametrized afss_p_: S'AS, whereSis a certain matrix
which also diagonalizes+® +A,

;i+q>i+Ai:SiT)\iSi' (3)

where all the matrices are diagonal in grain indices. Then the

ing out the fermionic fields, one arrives at the effective ac-entire saddle-point manifold is parametrized as

tion in terms of three bosonic fields: a matrix fiedd that
decouples the disorder-induced “interactiony that de-
couples the Coulomb repulsion, amd that decouples the
BCS attraction,

1_ .. 1
—Tr|A|?+ ETrcbu*lcp

oA D= —Tr 02+
S[O-, ’ ]_87'6| ro 4)\0

1 A - - -
—ETrIn —&—t+ oc+i(A+dP+e€)|.

|
2 Tel
D

Here the operatog equalsi ;3197 in imaginary time represen-
tation and becomes the diagonal matrix of fermionic Matsub

ara frequencies in frequency representatE“p'm the operator
of the intragrain kinetic energgcounted from the chemical

potentia), andt is the tunneling amplitude matrigi.e., the
intergrain kinetic energy All the bosonic fields are defined
in the space which is convenient to think of as a direct prod
uct of theNX N replica sector, the 2 spin sector, the 2
X 2 “time-reversal” sector(introduced for a correct decou-

pling in the Cooper, channel for both disorder-induced and

BCS interactions and of themxX m grain sector. The symbol

Tr refers both to a summation over all these matrix indices

and to an integration over positionand the imaginary time
7. The matrixa is diagonal in grain indicegalled lateri, j)
and possesses standard symmetries in all the other s&ttor
The pairing fieldA is diagonal in the replica and grain indi-
ces and inx=(r,7), and has the following structut®in the
time-reversal and spin sectors:

Ax)= |A(X)|e(i/2)x(x);3;§p® e (X7,

)
whereT, and 75" are Pauli matrices in the time-reversal and
spin sectors, respectively. The Coulomb fidi{x) is pro-
portional to the unit matrix in all the matrix sectors. Finally,
in Eq. (1) A\g and 7, are the BCS coupling constant and the
elastic mean free time, respectively, dde=U(r—r’) is the
Coulomb interaction.

The principal simplification for granular systems is that

all the fields are spatially homogeneous inside each graip,

when the grains are zero dimensional, i.e., their sizes

=<¢,Lt (¢ andLy are the superconducting and thermal co-

herence lengthswhich is equivalent tdA |, T= 17eg. Then

S

=5'QiS, Q=UfAU;, (4)

where in the Matsubara representatibr- diag{sgne}, and
matrix U defines the standard coset sp&télere Q is a
degenerate solution to the saddle-point equation for the ac-

tion (1) whene=0, A, and® all vanish. The parametriza-

tion (4) “aligns” the field o so thatA and® are taken into
account in the zeroth approximation.

Now we perform a similarity transformation with matri-
cesS and S' under Trin in Eq.(4). As all the fields are
spatially homogeneous inside each gr&mommutes with

the operator. Then one only needs to expand the Trin to
the first nonvanishing orders iy and \;, this expansion
being justified whent|,|A|, T<1/7y<eg. Thus one arrives
at the following effective action:

Ci

2e?

>
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A2
st DD,

2N

B
5[Q,A,cb]=f0 dr[zi
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"2 55TNQIT S 2 TrQISQS;
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whereSjESiSjT, all the fields depend om, Tr refers to all
indices except those numerating graids, is mean level
spacing in theith grain, and the tunneling conductance is
defined bygj;=27t;;|% & ; (which is nonzero only for
neighboring grains Both Sand\ should be found from the
diagonalization procedure in E¢B).

The next step is to represe8t as

S =V,e (27, (6)

This is similar to the gauge transformation suggested in Refs.
21 and used in Ref. 17 to gauge out the Coulomb field.
However, one cannot gauge out two independent fiels,
and®d. Substituting the transformatig) into the diagonal-

ization condition(3), we reduce it to

ereA? is the field(2) taken aty=0 and the fieldD is
ven in ther representation byb,=®;—34_y; .
Both ® and|A| are massive fields whose fluctuations are

gi

the Coulomb interaction reduces to the capacitance matrix§trongly suppressed. It is straightforward to show that the

U*1—>Cij /e?, and the tunneling matriiz{tij} depends
only on grain indices.

Now we follow the procedure of derivation of the MM
for dirty superconductor¥ First, we look for a saddle point

05451

fluctuations of® are of orders which is much smaller than
both T and|A|. Therefore, in the mean-field approximation

in @ this field can be neglected)=0. This condition is
nothing more than the Josephson relation in imaginary fime.
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This locks the fluctuations of the Coulomb field with the  eter, whose arguments are the imaginary timeand the

phase fluctuations of the pairing field position indexi, i.e., the grain number. Indeed, the second
term in Eq.(9) reduces to a trivial constant; evaluating the
d=34d,x, (8)  tunneling term with the help of Eq§10) and(11), we obtain

thus reducing the actiofb) to one depending only on the C. (s 5 p
fields Q andA. N Sx1=2 —”f d7d.xi rﬂTX;—Zgin drf dr’
The mean-field approximation if;| is valid for |A;] 7 [ 8e?Jo "o 0
> 6 and reduces to the standard self-consistency equation

that formally follows from the variation of the actiofb)
with respect tdA|. In this approximation one findg;| to be
independent of and 7. Thus the first term in Eq(5) be-
comes a trivial constant, so that the action depend@and  wherex;; (7)= xi(7) — x;(7),

X g2(7— 7')cosy;; + g2(7— T')COSXiJ]-r] , (12

x only, + ,
xi; =z0xi (1) = xi; (7)1,
SQ,x]1=> &fﬁdTﬁTXiﬁfXj—E lTr)\iQi and the normal and anomalous Green’s functigpsg (inte-
7 8e?Jo T 26 grated over all momentare given by
T
9ij > i A
-3 17rQ,S,Q:S; . (9) B esiner B |A|coser
2 < Ot el N=T2, ——, N=T2, —————.
Note that the fieldy in this action obeys the standard bound- (13

ﬁ]ry fl’?endlg?tiri]_‘i)(() (I‘1T]_{Ilr[13()2'ﬂ:0)r(1 (xi;?]oﬁéwé;?ouns \é)vrk\‘:nsrcngllﬁgligke-rhis action coincides with that derived in Refs. 8—10. Fur-
9 P ' ther simplifications are possible in two limiting cases.

mto accou_nt _dlfferent topqloglcal sectors corresponding to First, in the normal case\(=0), one has in Eq(13)
different winding numbers iry.

The “phase-only” action(9) includes neither fluctuations T2
of the amplitude of the order parametemor fluctuations of 0.=0, gi(r)=———. (14)
the Coulomb field beyond the Josephson relation, By. N Sie wTr

We show below that it can be reduced to the AES action,

Still, we stress that the action is more general than the AES €N the fieldy should be substituted, according to &8),
action. Thus, in the absence of superconductivity0, it~ PY 2/"d7'®(7’). This limiting case corresponds to using the
was showl that the former contains a correct screening ofactions (12) and (14) in the context of a normal tunnel
the Coulomb interaction at low, in contrast to the latter. Junction-> This is precisely the action which has been re-
This may also be important in the case whé&nis much cently derived from the N&zM in Ref. 17; the functiona(9)
smaller than the charging energy. in the limit A=0 is equivalent to ther model of Ref. 17.

To further simplify the actior(9) we note that the diago- Including the disorder—ind_uced fluctuatiofise., g_oing be-
nalization conditiong7), in the absence of thg\| fluctua-  YOnd theQ=A approximation allows one to obtaf a cor-

tions, are the same for each grain and reduced to those solv&gCt low-T limit for the phase correlation function missing in
in Ref. 18, the action(12).

The action(9) is more general than that considered in Ref.
0. nep ~ . Oc 17: although under the mode-locking conditi¢8) it de-
Veer =C0S5 ¢ o + PR T, SIN>Sgne o, -, pends only on the fieldg andQ, the matrixS;; , Eqs.(10)
and (11), reduces to a simpl&l(1) gauge transformation as
€| in Ref. 17 only in the limitA=0.
A=diagJ/e?+|A[?sgne, cosf = . (10 The second limiting cas&,<|A], is just the limit relevant
Ver+|Al? in the context of the Sl transition in granular superconduct-

ThenS, in Eq. (9) can be expressed in terms \dfas ors. ForT=0, the summation in Eq13) can be substituted
! by integration which yields

|A] A

Sj=Ve PVl yi=xi—x;. (11) |
7K1(|A|T), Ja(7) = 7Ko(|A|T)-

Finally note that largée| contributions to the actiofd) are gn(7)=
strongly suppressed, while fde|<|A| one has\=|A|A

which suppresses fluctuations @fin each grain imposing This is also a good approximation for a low-temperature
Q=A. Then, all matrices in the actid®) are diagonal in the case; substituting this into E¢12) gives the action for the
replica indices so that these indices become redundant. Thitissipative model:° Note that for| 7— 7'|<|A| ™%, the main
diagonalization procedurgEgs. (10) and (11)] has resolved contribution in the tunneling actiofl2) is given by the nor-
explicitly the matrix dependence on the time-reversal andnal term with the corresponding kernel proportional| to
spin indices. This reduces the action to that depending only- 7’| 2. The Fourier transform of this would give a term of
on onescalar bosonic field, the phase of the order param- the Caldeira-Leggett tydeproportional to|w|.
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The tunneling actior(12) is nonlocal in7. As has been Finally, by introducing the operatar canonically conju-

noted in Ref. 9 for the case of one tunnel junction, for suf-gate to the phasg, one finds the Hamiltonian that corre-
ficiently large capacitance the phagg changes slowly in  sponds to the actiofl5):

comparison with A| ", and in the adiabatic approximation
x(7') is changed byy(7)+ (7' — 7)d,x(7). Making such an ~ 1 oA T
expansion, one obtains from E@L2) the following local H_% 2Uinin; —[A]gij cos xi — x;)- 17)
action:
This is just the Hamiltonian of the Bose-Hubbard m&del
(B 1 g T which was first microscopically derived by Efefdvin the
Sxl= o dr ; 2Uijxix;— |A]gij cosxij i (19 context of granular superconductors.
To conclude, we have derived the effective &-type

where y;=4d,x; and action[Eg. (5)] for a granular system with zero-dimensional
grains in the presence of Coulomb interaction and supercon-
1 G E gﬁ 3+ cosyj; ductivity. This is the most generdin the present context
ui EJ“ ~ A 3 ' action that takes into account fluctuations of both amplitude

and phase of the order parameterNeglecting fluctuations
of |A| and fluctuations of the Coulomb field beyond the Jo-
usle U 2 2T EERA sephson relatiofi8) reduces this action to the “phase-only”
U462 (A 8 action (9) which still contains intragranular disorder impor-

If all the self-capacitances are equal @with E,xe?/C t?]nt fqr the correct scree_ning f_¢A|'smaII compared to the
being the charging energy, and gfl=g", thenu; =U has charging energy. Neglecting this disorder further reduces the
9 . ging 9y, and g =g , i > action (9) to that of the AES mode{12). When the renor-

the meaning of the renormallzgd charging energy. Ignoring Aalized charging energy, E(L6), is much smaller thafi|,

weal_< dependence cnf_on COSy;; I the abov.e relations, one the action(12) finally goes over to that of the Bose-Hubbard

obtains the renormalized charging energy: model, Eq.(17), which is widely used for the description of

E the superconductor-insulator transitibhlowever, the above

U=—-° (16) estimations show that this reduction is parametrically justi-
1+#E.g"/|A fiedTonIy for the regiorE.<|A| where the transition happens

Here the coefficient # depends on the number of next neighé—lt g <E./|A|<1 which corresponds to a strongly granular

bors for each grain, etc. A similar renormalization takes pIaceSyStem' Note finally that the most geneai the present

for the next-neighbor off-diagonal energy . Now one can contexj action (5) describes both amplitude and phase fluc-

. . ; o tuations of the order parameter, being still considerably dif-
see that on the face of it the adiabatic approximation €Mz, ant from the NloM action for homogeneous svstems. We
ployed to obtain Eq(15) is valid for U<|A|. However, in g y :

the regiong™>|A|/E,, where the charging energilé) is hope that using this action may eventually lead to a different

strongly renormalized, the instantonlike solutithsiay be phase diagram for granular superconductors.
important. This may further reduce the region of applicabil- This work has been supported by the Leverhulme Trust
ity for the local in 7 action (15). under Contract No. F/94/BY.
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