60 research outputs found

    Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method

    Get PDF
    Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier-Stokes equations in a cubical domain. The Projection-Diffusion method [Leriche and Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386-1410), Leriche et al. (2005, J. Sci. Comput., in press)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presente

    Intermittency and transition to chaos in the cubical lid-driven cavity flow

    Get PDF
    Transition from steady state to intermittent chaos in the cubical lid-driven flow is investigated numerically. Fully three-dimensional stability analyses have revealed that the flow experiences an Andronov-Poincar\'e-Hopf bifurcation at a critical Reynolds number RecRe_c = 1914. As for the 2D-periodic lid-driven cavity flows, the unstable mode originates from a centrifugal instability of the primary vortex core. A Reynolds-Orr analysis reveals that the unstable perturbation relies on a combination of the lift-up and anti lift-up mechanisms to extract its energy from the base flow. Once linearly unstable, direct numerical simulations show that the flow is driven toward a primary limit cycle before eventually exhibiting intermittent chaotic dynamics. Though only one eigenpair of the linearized Navier-Stokes operator is unstable, the dynamics during the intermittencies are surprisingly well characterized by one of the stable eigenpairs.Comment: Accepted for publication in Fluid Dynamics Researc

    A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation

    Full text link
    Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the van Cittert method are reported. The Legendre spectral element method is used for the spatial discretization to solve the filtered Navier--Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12'000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the C0-continuity across elements. No clipping on dynamic parameters was needed to preserve numerical stability

    Large-eddy simulation of the flow in a lid-driven cubical cavity

    Full text link
    Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have been carried out at a Reynolds number of 12000 using spectral element methods. Two distinct subgrid-scales models, namely a dynamic Smagorinsky model and a dynamic mixed model, have been both implemented and used to perform long-lasting simulations required by the relevant time scales of the flow. All filtering levels make use of explicit filters applied in the physical space (on an element-by-element approach) and spectral (modal) spaces. The two subgrid-scales models are validated and compared to available experimental and numerical reference results, showing very good agreement. Specific features of lid-driven cavity flow in the turbulent regime, such as inhomogeneity of turbulence, turbulence production near the downstream corner eddy, small-scales localization and helical properties are investigated and discussed in the large-eddy simulation framework. Time histories of quantities such as the total energy, total turbulent kinetic energy or helicity exhibit different evolutions but only after a relatively long transient period. However, the average values remain extremely close

    A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries

    Get PDF
    International audienceIn the present paper, a fluid-structure interaction model is developed, questioning how the mechanical action of the blood onto an atheromatous plaque is affected by the length and the severity of the stenosis. An axisymmetric model is considered. The fluid is assumed Newtonian. The plaque is modelled as a heterogeneous hyperelastic anisotropic solid composed of the arterial wall, the lipid core and the fibrous cap. Transient velocity and pressure conditions of actual pulsatile blood flow are prescribed. The simulation is achieved using the Arbitrary Lagrangian Eulerian scheme in the COMSOL commercial Finite Element package. The results reveal different types of behavior in function of the length (denoted L) and severity (denoted S) of the stenosis. Whereas large plaques (L > 10 mm) are mostly deformed under the action of the blood pressure, it appears that shorter plaques (L < 10 mm) are significantly affected by the shear stresses. The shear stresses tend to deform the plaque by pinching it. This effect is called: "the pinching effect". It has an essential influence on the mechanical response of the plaque. For two plaques having the same radius severity S = 45%, the maximum stress in the fibrous cap is 50% larger for the short plaque (L = 5 mm) than for a larger plaque (L = 10 mm), and the maximum wall shear stress is increased by 100%. Provided that they are confirmed by experimental investigations, these results may offer some new perspectives for understanding the vulnerability of short plaques

    Large-Eddy Simulation of the Lid-Driven Cubic Cavity Flow by the Spectral Element Method

    Get PDF
    This paper presents the large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method (SEM) using the dynamic model. Two spectral filtering techniques suitable for these simulations have been implemented. Numerical results for Reynolds number Re=12,000 are showing very good agreement with other experimental and DNS results found in the literatur

    Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method

    Get PDF
    This paper presents the large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method (SEM) using the dynamic model. Two spectral filtering techniques suitable for these simulations have been implemented. Numerical results for Reynolds number Re=12′000\text{Re}=12'000 are showing very good agreement with other experimental and DNS results found in the literature

    Simulation numérique 3D de la coextrusion des fluides polymériques et de l'effet d'enrobage

    Get PDF
    L'ensemble des travaux présentés dans cette thèse porte sur la simulation numérique des procédés de coextrusion par un modèle d'écoulement stratifié basé sur la méthode du champ de phase. L'avantage technologique offert par la coextrusion réside dans la possibilité de combiner des matériaux ayant des propriétés physiques très spécifiques dans un produit unique. Toutefois, les différences rhéologiques entre les divers matériaux sont elles-mêmes responsables d'un phénomène de distorsion de l'interface séparant deux couches adjacents. Les données expérimentales en coextrusion bicouches montrent que, en raison des différences de viscosité et d'élasticité entre le deux composants, le fluide le moins visqueux encapsule le fluide plus visqueux et le passage d'une configuration stratifiée à une encapsulée comporte une perte de qualité du produit final. Ce phénomène, dit d'enrobage représente donc un sujet de très grande actualité dans la recherche industrielle et la compréhension des mécanismes le générant sera utile pour l'amélioration des procédés de mise en forme des polymères. La nature intrinsèquement tridimensionnelle de l'enrobage a requis le développement d'un code pour la simulation tridimensionnelle basée sur la méthode des volumes finis pour la discrétisation des équations de Navier-Stokes pour les écoulement incompressibles et isothermes couplées avec une loi constitutive différentielle non linéaire (modèles de Giesekus ou PTT). La présence de deux fluides est prise en compte par une équation scalaire supplémentaire décrivant l'évolution de l'interface sur un maillage fixe. Cette équation offre une interprétation physique précise car elle est dérivée de la thermodynamique de séparation de phase d'un fluide binaire. Le modèle proposé est validé par confrontation avec les résultats expérimentaux et numériques disponibles dans la littérature. Une étude numérique de la coextrusion en filière rectangulaire est effectuée afin de mettre en évidence les facteurs influençant l'enrobage et la nature de son origineThe objective of the present work is the analysis of coextrusion processes by numerical simulation based on phase-field modeling of stratified confined flows. The study of such flows is motivated by the presence of complex phenomena appearing in a vast range of industrial operational coextrusion conditions due to the differences in the components properties and their viscoelastic behavior. The basic idea in coextrusion is to combine several layers of different polymers in a common die, to form a unique product with enhanced properties. However, the existence of fluid stratification in the die is responsible of a severe distortion of the interface between the fluid components, causing a loss of efficiency for the whole process. Experimental data show that, even if a stratified initial configuration is imposed at the die entry, one fluid eventually encapsulates the other in most of the flow condition analyzed. The intrinsically three-dimensional nature of this phenomenon has required the development of a three-dimensional flow solver based on the finite volume discretization of the Navier-Stokes equations for incompressible and isothermal flow, together with differential nonlinear constitutive equations (Giesekus, PTT models). The presence of two fluid phases is taken into account by a phase field model that implies the solution of an additional scalar equation to describe the evolution of the interface on a fixed Eulerian grid. This model, unlike others of the same family, has a thermodynamic derivation and can be physically interpreted. The proposed method is tested against experimental data and solutions already available in literature and a study of coextrusion in rectangular dies is performed to identify the dependence of encapsulation on the flow parametersST ETIENNE-Bib. électronique (422189901) / SudocSudocFranceF

    Simulation numérique et modélisation de l'enrobage de deux fluides visqueux par la méthode du champ de phase

    Get PDF
    Le phénomène de l'enrobage représente un sujet de grand intérêt industriel surtout dans le cadre de la co-extrusion des matières plastiques. L'objectif de cette recherche est de développer un modèle pour le traitement des écoulements stratifiés de 2 fluides non miscibles et de simuler le réarrangement des couches de fluides en raison de leurs différences de propriétés physiques. La méthode numérique adoptée est celle des volumes finis appliquée aux équations de Navier-Stokes incompressibles couplées avec une équation du type Champs de Phase pour la prise en compte des surfaces libres

    Comparaison de différentes méthodes numériques pour l'étude de la collision dipôle-paroi

    Get PDF
    Nous présentons une confrontation entre différentes méthodes numériques pour résoudre les équation de Navier-Stokes : Volumes Finis, Différences Finies, Fourier, Tchebyshev, Gaz de Boltzmann, Ondelettes, ... pour l'étude de la collision entre un dipôle et une paroi non glissante. La précision obtenue en fonction de la résolution, l'ordre des méthodes, les temps de calculs requis seront présentés pour toutes les méthodes
    • …
    corecore