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Direct numerical simulation of the flow in a lid-driven cubical cavity has been
carried out at high Reynolds numbers (based on the maximum velocity on
the lid), between 1.2 10* and 2.2 10*. An efficient Chebyshev spectral method
has been implemented for the solution of the incompressible Navier-Stokes
equations in a cubical domain. The Projection-Diffusion method [Leriche and
Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386-1410), Leriche et al. (2005,
J. Sci. Comput., in press)] allows to decouple the velocity and pressure com-
putation in very efficient way and the simple geometry allows to use the fast
diagonalisation method for inverting the elliptic operators at a low computa-
tional cost. The resolution used up to 5.0 million Chebyshev collocation nodes,
which enable the detailed representation of all dynamically significant scales
of motion. The mean and root-mean-square velocity statistics are briefly pre-
sented.

KEY WORDS: Chebyshev spectral method; direct numerical simulation; 3D
lid-driven cavity.

1. INTRODUCTION

Estimates for the attainable turbulent Reynolds number by the method of
direct numerical simulation (DNS) have been known for several decades.
This estimate is based on the ratio between the largest scales to the fin-
est ones (i.e. Kolmogorov scales), which scales like Re’/*, where Re is
the Reynolds number, and to resolve numerically all the scales, an upper
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bound in term of degrees of freedom (dof) is then given by Re®/4. The
evolution in computer hardware and algorithmic developments makes it
now possible to extend the direct numerical simulation to transitional and
turbulent flows that are inhomogeneous in all space directions. The pres-
ent contribution is concerned with the numerical and physical aspects of
the direct simulation of incompressible flow within a lid-driven cubical
cavity. The fluid is enclosed in a cubical cavity where one wall is moved
with a specified velocity. The goal is to reach the highest Reynolds number
but in a very simple domain, a cubical cavity and then to study in detail
the three-dimensional transitional and turbulent flow properties within the
cavity by means of direct simulation at high Reynolds numbers (based on
the maximum velocity on the lid), between 1.2 10* and 2.2 10*. This sim-
ple geometry leads to a very efficient code. The resolution used up to 5.0
million Chebyshev collocation nodes, which enable the detailed representa-
tion of all dynamically significant scales of motion. The flow phenomena
encountered within such systems are many and poorly understood. To our
knowledge, such detailed study of this type of complexity is not available
in the scientific literature.

The paper is organized as follows: after Sec. 2 recalling the govern-
ing equations, Sec. 3 focuses on decoupling between the velocity and the
pressure. The space and time discretizations are very briefly addressed.
Section 4 discusses the numerical and physical parameters of the direct
numerical simulations in the lid-driven cavity. Section 5 presents some
physical aspects of DNS results and some comparison between the three
high Reynolds numbers cavity flows. The paper ends with conclusions.

2. THE GOVERNING EQUATIONS

The fluid enclosed in the cavity is assumed to be incompressible, vis-
cous, Newtonian and homogeneous. The equation of motion for the fluid
inside the cavity is given by the Navier-Stokes equation. The flow domain
and naming conventions are given in Fig. 1. The three-dimensional domain,
denoted by Q, is the open interval (]— h, +-h[)? and its closure is written as

Q. The Navier-Stokes equations are written in vector notation as
ou
ot

with the continuity equation given by

+@-V)u=—-Vp+vAu (1)

V-u=0, 2

where the velocity vector u has components (u, v, w) = (uj, us, u3), and
x=(x,y,2)=(x1,x2,x3).
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Fig. 1. Sketch of the problem and axes system.

The boundary conditions for the velocity consist in enforcing no-slip
at every solid wall except on the moving lid at y=+h. The velocity distri-
bution on the lid is given by the following expression

u(x, y=-—+h,2)=U,(1— (x/h)")*(1 = (z/ )")* 3)

with n =18 and where U, is the maximum lid velocity. This lid velocity
profile avoids singularity at the top edges of the cavity. The sensitivity of
the results to polynomial distribution of the lid velocity profile is discussed
in [11] for two-dimensional cavity flow. The Reynolds number is based on
the maximum velocity on the lid and is given by Re=U,2h/v.

3. NUMERICAL APPROXIMATION
3.1. Space Discretization

The spatial approximation of the equations of motion—the incom-
pressible Navier-Stokes equations—is based on the use of expansions in
Chebyshev polynomials along every space direction. All matrices arising
from the discretization are cast into the tensor product form with substan-
tial gains in computational efficiency. The collocation method consists of
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exactly enforcing the differential equations, and the boundary conditions,
at the Chebyshev-Gauss-Lobatto points [4, 6]. The velocity and pressure
fields belong to the same polynomial space (see next section).

3.2. How to Enforce the Incompressibility Constraint?

A number of different methods are available to enforce the incom-
pressibility constraint [5, 9, 17]. The projection-diffusion method intro-
duced in [2] is chosen for its consistency with the continuous space-time
problem and for its optimal cost. The pressure is expanded into polyno-
mials of the same order as the velocity, while intermediate velocity results
are truncated in a way that enforces continuity without any contamination
by spurious pressure modes [10].

A complete numerical analysis of this decoupling method may be
found in [13, 14] where it is compared with the high-order time splitting
scheme proposed by Karniadakis et al. [8].

The unsteady Navier-Stokes problem is solved with a Projection-
Diffusion solver which uncouples the (u, p) fields independently of any
temporal scheme. Section 3.2 in [13] provides all the details about the
discrete formulation of the unsteady Stokes problem, which this section
relies on. The spatial discretization is based on the usual Chebyshev
Gauss-Lobatto collocation method [4, 6]. Let N be the polynomial cut-
off frequency, where N + 1 is the number of collocation points, in each
space direction. For the sake of conciseness, the equations in this subsec-
tion are written as the continuous transposition of the corresponding dis-
crete problem. For instance V- stands for the discrete (N +1)° divergence
matrix operator and x € Q means that only the internal nodes are con-
cerned. From Eq. (1), an intermediate divergence free field is introduced,
the acceleration a,

a J—
aza—l;—vAu for xe Q. “4)

The problem is solved through two steps:
First Step: the pressure is evaluated from

a—|—Vp=—f for x e Q[, (i=15273)7 (5)
Va=0 forxe Q, (6)

0
a-n:(a—l;+viqu>-n for xe 0Q, (7)
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where

Q = ]—h, +h[ x [=h, +h] x [=h, +h],
Q = [~h, +h] x ] —h, +h[ x [=h, +h],
Q3 = [—h, +h] x [—h, +h] x]—h, +h]

for the respective components of Eq. (5). The source term f stands for the
non-linear advective terms (treated explicitly in time, see next section). As
explained in [13], the —V x V x u solenoidal term in the normal bound-
ary condition (7) is chosen instead of Au in order to preserve the ellip-
ticity of the Stokes problem. The irrotational part V(V -u) is dropped in
accordance with Eq. (2). The first step (5)—(7) allows the computation of
the pressure through the solution of a Darcy type problem [1], assuming
that the r.h.s. of the normal boundary condition (7) is known (see below).
The first step (5)—(7) is recast into a quasi-Poisson operator taking into
account the normal boundary condition (7).
Second Step: the velocity is evaluated through the diffusion step

M _Au=a for xeQ, ®)
u=0 for xedQ.

3.3. Time Integration

The time discretization of the Navier-Stokes equations is based on
a second-order backward Euler differentiation formula. The viscous terms
are treated implicitly whereas the non-linear terms are advanced explic-
itly in time by a second-order extrapolation scheme. They are evaluated
from their skew-symmetric form. The normal boundary conditions (7) is
found by a second-order extrapolation scheme. The overall accuracy is sec-
ond-order in time and the scheme is subject to (CFL) restrictions in the
time step due to the explicit advancement of the non-linear terms (see next
section).

4. PHYSICAL AND COMPUTATIONAL PARAMETERS

The numerical simulations in the cubical cavity at Reynolds numbers
of 12000 (resp. 18000 and 22000) have been performed on the NEC-SX4/5
at Swiss Center for Scientific Computing (CSCS-Manno) with a resolution
of 1293 (resp. 1693) collocation points. The main computational and phys-
ical parameters are reported in Table I. The very simple geometry of the
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Table I. Main Physical and Numerical Parameters for Direct Numerical Simulations at
Reynolds Numbers 12000, 18000, and 22000

Domain size (X,y,z) 2h, 2h, 2h 2h, 2h, 2h 2h, 2h, 2h
Re=U,2h/v 12000 18000 22000

Nb. Chebyshev 1293 1693 1693
Polynomials (x,y,z)

Grid Resolution min 0.000301 h 0.000175h 0.000175h
Grid Resolution max 0.0245h 0.0187h 0.0187h
Time step (h/U,) 0.0025 0.0015 0.00125
CFL max 0.29 0.26 0.23
Computers (NEC) SX4 SX5 SX5
Sustained Gflop rate (Peak) 1.8 (2.0) 6.5 (8.0) 6.5 (8.0)
Cpu(sec)/time step 20.625 17.00 17.00
Cpu(sec)/(time step*node) 9.61 x 107 3.5%1076 3.5x 1076
Total integration time (h/U,) 1000 1400 3500
Sampling rate (h/U,) 0.25 0.1275 0.10625
Nb. of samples 4000 10000 30000
Size of one sample (Mb) 68.7 154.5 154.5
Total data held in store 250Gb 1.7Tb 5.4Tb

cavity allows to write a very efficient code based on solution of elliptic
operators using the fast diagonalisation method [7, 15]. The code is then
highly vectorized and could reach more than 80% of the peak performance
of a single NEC processor. The time steps were chosen in order that the
corresponding CFL number given by Zf’:l ‘”A"fit ’ are 10% below the CFL
limit given in Table I. Ax; is the distance between two neighbouring collo-
cation points in the x; direction. The CFLyx turns out to decrease when
increasing the mesh size but also when increasing the Reynolds number.

The spatial accuracy of the simulations is gauged by monitoring the
evolution with time of the absolute values of the ratios of the lowest
Chebyshev mode to that of the highest for each component of the velocity
field in the spectral space. They did not exceed 1073, This is stricter crite-
ria than those based on statistics such as spectra. The asymptotic behav-
ior of the three velocity components near each boundary was also verified.
An additional check was the balance of the terms in the equation for the
turbulent kinetic energy—not shown here.

The databases are generated by storing the three-dimensional veloc-
ity and pressure fields in order to get first- and second-order statistics
taken on meaningful sample. The sizes of those databases are of the
order of 250 Gbytes (Re =12000), 1.7 Tbytes (Re =18000) and 5.4 Tbytes
(Re=22000). It turns out that the statistics for the case of Re =22000
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require much more longer sample than the one at Re =18000. The total
integration time for the simulations reported in Table I leads to first- and
second-order velocity statistics approximately symmetric about the mid-
plane z/h =0, the mid-plane being a plane of statistical symmetry. Both
transient and steady-in-the-mean states of the flow possess long time scales
requiring long integration times.

5. SOME DNS RESULTS

The most exhaustive quantitative experimental data for the lid driven
cavity flow may be found in [16]. Measurements (mean and root-mean-
square (rms)) on the vertical and horizontal centerlines in the mid-plane
are reported at different Reynolds numbers up to 10000. The experimen-
tal data at the highest Reynolds number of 10000 provide a fair agreement
with the simulation at the lowest Reynolds number of 12000 [12]. None-
theless, this comparison is limited to the mid-plane.

The first- and second-order velocity statistics have been computed for
the three Reynolds numbers. The effects of Reynolds number on the driven
cavity flow will be preliminary discussed here. The kinetic energy K con-
tained in the thin viscous layer of fluid close to the lid is successively
transferred into the cavity flow by viscous diffusion. The total kinetic
energy is shown to decrease with the Reynolds number (Fig. 2) in accor-
dance with the estimate K ~ U3(2h)3Re’1/ 2 given in [12].

0.058
0.056 Re=12000
0.054
0.052
0.05
Re=18000
0.048

0.046 Re=22000

Total Kinetic Energy

0.044
0.042

0.04

0 500 1000 1500 2000 2500 3000 3500
Time

Fig. 2. Time history of the total kinetic energy for Reynolds numbers 12000, 18000, and
22000.
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The most dominant features of the mean flow are the large-scale
recirculation which spans the cavity, the coexistence of fast- and slow-
flowing regions near the moving lid, the presence of wall jet (parallel to
the downstream, bottom and, at higher Reynolds numbers, the upstream
vertical wall), of jets impingement on the bottom and upstream wall,
and of corner spiralling vortices [12]. Figure 3 shows contours of the
u and v mean fields in the mid-plane of the cavity. The viscous layer
close to the lid and the downstream wall jet are getting thinner as the
Reynolds increases. The enlargements of the downstream bottom corner
clearly show that the size of corner vortices decrease as the Reynolds
increases.

Contours of the rms (root-mean-square) of u,v and w in the mid-
plane near the downstream bottom corner are shown in Fig. 4. The rms
increase with the Reynolds number (Table II), faster for u-rms and slower
for v-rms.

Re=18000 Re=22000
11=

Fig. 3. Contours of the mean velocity field u and v in the mid-plane z = 0 (coordinates
(x/h,y/h)). Top figures: equidistant mean velocity u contours; maximum contour level 1.0,
minimum contour level —0.21, interval of 0.019. Bottom figures: equidistant mean velocity v
contours; maximum contour level 0.1, minimum contour level —0.7, interval of 0.0125.
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Fig. 4. Contours of the rms of u (a), v (b), and w (c) for the Reynolds numbers 12000
(1), 18000 (2), and 22000 (3) in downstream bottom corner of the mid-plane z =0 (coordi-
nates (x/h, y/h)). (a) equidistant u-rms contours; maximum contour level: 0.085, interval of
0.0013. (b) equidistant v-rms contours; maximum contour level: 0.16, interval of 0.0025. (c)
equidistant w-rms contours; maximum contour level: 0.17, interval of 0.0027.

Table II. Maximum  rms  (root-mean-

square) Values of u,v, and w in the Mid-

Plane at Reynolds Numbers 12000, 18000
and 22000

Reynolds 12000 18000 22000

u-rms 0.07 0.082 0.085
v-rms 0.146 0.147 0.159
w-rms 0.15 0.164 0.175
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An analysis of the mean and fluctuating fields near the downstream
bottom corner shows that the turbulence is generated by the impact of
the flow descending near the downstream vertical wall (downstream wall
jet). The jet impact on bottom wall can be easily determined by looking at
the pressure distribution on the bottom wall—not shown here. The peaks
of pressure at the impact are getting narrower as the Reynolds increases.
Along the downstream vertical wall, the flow is not turbulent but highly
chaotic and near the bottom wall, the rms are found to reach their maxi-
mum values at the jets impact and in their vicinity, Fig. 4.

6. CONCLUSION AND FUTURE WORK

Direct numerical simulations using a Chebyshev collocation method
have been performed for the lid-driven cavity flow at high Reynolds num-
ber. The instantaneous three-dimensional velocity and pressure fields have
been stored in databases for three Reynolds numbers (12000, 18000, and
22000) and first- and second order velocity statistics have been computed
on long integration time to capture long time scales of the cavity flow.
The mean momentum budgets are currently investigated and the leading
terms in these balances are examined. The Reynolds stress budgets have
been computed and the statistics for the distribution of energy between the
various components will be discussed.

The databases are currently used in the framework of the large eddy
simulation to validate filtering approaches and a priori/a posteriori simu-
lation tests. Preliminary results may be found in [3].
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