Large-eddy simulations of incompressible Newtonian fluid flows with
approximate deconvolution models based on the van Cittert method are reported.
The Legendre spectral element method is used for the spatial discretization to
solve the filtered Navier--Stokes equations. A novel variant of approximate
deconvolution models blended with a mixed scale model using a dynamic
evaluation of the subgrid-viscosity constant is proposed. This model is
validated by comparing the large-eddy simulation with the direct numerical
simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds
number of 12'000. Subgrid modeling in the case of a flow with coexisting
laminar, transitional and turbulent zones such as the lid-driven cubical cavity
flow represents a challenging problem. Moreover, the coupling with the spectral
element method having very low numerical dissipation and dispersion builds a
well suited framework to analyze the efficiency of a subgrid model. First- and
second-order statistics obtained using this new model are showing very good
agreement with the direct numerical simulation. Filtering operations rely on an
invertible filter applied in a modal basis and preserving the C0-continuity
across elements. No clipping on dynamic parameters was needed to preserve
numerical stability