11 research outputs found

    THE INFLUENCE OF AIR TEMPERATURE, HUMIDITY AND AIR PRESSURE ON THE PRESENTATION OF PATIENTS WITH ACUTE CORONARY SYNDROME TO THE EMERGENCY DEPARTMENT

    Get PDF
    Ishemijska bolest srca je diljem svijeta vodeći uzrok smrti. Akutni koronarni sindrom je skup bolesti i stanja koji uzrokuje naglo nastala ishemija miokarda. Dijeli se u tri skupine: infarkt miokarda s ST-elevacijom (STEMI), infarkt miokarda bez ST-elevacije (NSTEMI) te nestabilna angina (NAP). STEMI je infarkt koji možemo dijagnosticirati na temelju karakterističnog EKG zapisa (elevacija ST spojnice u 2 ili više odvoda). Za razliku od navedenog, NSTEMI na EKG zapisu može imati inverziju T-vala ili npr. depresiju ST-segmenta, ali defi nitivnu dijagnozu mu daje povišeni nalaz srčanog enzima troponina. Nestabilna angina je stanje prolazne i kratkotrajne ishemije miokarda kod koje promjene u EKG zapisu mogu biti prisutne za vrijeme trajanja boli, no nalaz troponina je za razliku od infarkta miokarda bez porasta. Važno je naglasiti kako nestabilna angina često prethodi infarktu miokarda. Zbog ljudskog utjecaja klima je diljem svijeta poremećena, posebno zbog industrijskog štetnog utjecaja na okoliš. Globalno zatopljenje uzrokuje čitav niz ekoloških katastrofa koje pogađaju stanovništvo diljem svijeta te se iz tog razloga razvijaju strategije za sprječavanje daljnjeg uništavanja klimatskog sustava našeg planeta. Meteorološka statistika se detaljno prati te se iskorištava u raznim istraživanjima iz aspekta utjecaja na ljudsko zdravlje. Cilj ovog rada je pokazati utjecaj vremenskih prilika na priljev pacijenata s AKS-om u Objedinjeni hitni bolnički prijam (OHBP) lokalitet Sušak u razdoblju od 1. siječnja do 31. prosinca 2017 godine. U analizi podataka se koristio deskriptivni način prikaza te klinički podatci pacijenata zaprimljenih u OHBP Sušak, prikupljenih iz informatičkog sustava KBC Rijeka. Ispitivanje je pokazalo da nema povezanosti između srednje mjesečne temperature, tlaka i vlažnosti zraka s priljevom pacijenata s AKS-om u OHBP Sušak. Istraživanje je ujedno potvrdilo i ono što mnoga druga istraživanja pokazuju, da muški spol ima statistički značajno veću učestalost AKS sindroma u odnosu na ženski spol.Ischemic heart disease is the leading cause of death worldwide. Acute coronary syndrome (ACS) encompasses a range of illnesses caused by sudden myocardial ischemia. There are three separate entities in ACS: ST-segment elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI) and unstable angina. STEMI can be diagnosed using an electrocardiogram (ECG) and a set of specifi c criteria. NSTEMI patients can have nonspecifi c ECG changes (T-wave inversions, ST-segment depression, etc.) but it is diagnosed based on elevation of cardiac enzymes (troponin). Unstable angina is a reversible myocardial ischemia of short duration in which patients can, but need not, have ECG changes during the occurrence of symptoms and do not have elevated cardiac biomarkers. It is important to note that unstable angina often precedes myocardial infarction. There are several human interferences, mainly industrial processes, causing negative impact on climate worldwide. Global warming is causing a growing number of natural disasters resulting in governments beginning to implement strategies to counteract negative infl uences. Meteorological statistics is being vigorously monitored and used in various studies from the human health perspective. The main objective of this study was to investigate if meteorological conditions had an impact on arrival of ACS patients to the Emergency Department, Rijeka University Hospital Centre in the period from January 1, 2017 until December 31, 2017. Descriptive statistical analysis was performed on a dataset obtained from the Hospital information system. The research showed that there was no correlation between mean temperature, atmospheric pressure and relative humidity on the number of ACS presenting to the Emergency Department. The research confi rmed the already widely known fact that male sex had a signifi cantly higher incidence of ACS

    Procedimiento para producir plaquetas humanas a partir de células en cultivo.

    Get PDF
    Se describe un procedimiento para obtener cantidades ilimitadas de plaquetas humanas a partir de las líneas celulares K562 y KU812, derivadas de leucemias mieloides. El procedimiento se basa en el tratamiento con estaurosporina a concentraciones 50 a 100 nM durante 3 a 6 días. Las células pueden crecerse en suspensión y las plaquetas pueden ser separadas de las células por métodos estándar. Las plaquetas son reconocibles morfológicamente y comparten características bioquímicas y ultraestructurales con las plaquetas aisladas de sangre. Se puede obtener así una preparación de plaquetas humanas a partir de precursores celulares genéticamente idénticos y libre de otros productos biológicos de origen humano. Pueden ser usadas para fines analíticos como servir de estándar en ensayos plaquetarios biológicos o bioquímicos.Solicitud: 009900666 (05.04.1999)Nº Pub. de Solicitud: ES2155379A1 (01.05.2001)Nº de Patente: ES2155379B1 (01.12.2001

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    A New Insight into Entropy Based on the Fuzzy Operators, Applied to Useful Information Extraction from Noisy Time-Frequency Distributions

    No full text
    In this paper, we study the connections between generalized mean operators and entropies, where the mean value operators are related to the strictly monotone logical operators of fuzzy theory. Here, we propose a new entropy measure based on the family of generalized Dombi operators. Namely, this measure is obtained by using the Dombi operator as a generator function in the general solution of the bisymmetric functional equation. We show how the proposed entropy can be used in a fuzzy system where the performance is consistent in choosing the best alternative in the Multiple Attribute Decision-Making Problem. This newly defined entropy was also applied to the problem of extracting useful information from time-frequency representations of noisy, nonstationary, and multicomponent signals. The denoising results were compared to Shannon and Rényi entropies. The proposed entropy measure is shown to significantly outperform the competing ones in terms of denoising classification accuracy and the F1-score due to its sensitivity to small changes in the probability distribution

    A New Insight into Entropy Based on the Fuzzy Operators, Applied to Useful Information Extraction from Noisy Time-Frequency Distributions

    No full text
    In this paper, we study the connections between generalized mean operators and entropies, where the mean value operators are related to the strictly monotone logical operators of fuzzy theory. Here, we propose a new entropy measure based on the family of generalized Dombi operators. Namely, this measure is obtained by using the Dombi operator as a generator function in the general solution of the bisymmetric functional equation. We show how the proposed entropy can be used in a fuzzy system where the performance is consistent in choosing the best alternative in the Multiple Attribute Decision-Making Problem. This newly defined entropy was also applied to the problem of extracting useful information from time-frequency representations of noisy, nonstationary, and multicomponent signals. The denoising results were compared to Shannon and Rényi entropies. The proposed entropy measure is shown to significantly outperform the competing ones in terms of denoising classification accuracy and the F1-score due to its sensitivity to small changes in the probability distribution

    Regulation of c-Myc and Max in Megakaryocytic and Monocytic-Macrophagic Differentiation of K562 Cells Induced by Protein Kinase C Modifiers: c-Myc Is Down-Regulated but Does Not Inhibit Differentiation

    Get PDF
    16 pages, 12 figures, 1 table.We have studied the regulation and role of c-Myc and Max in the differentiation pathways induced in K562 cells by 12-O-tetradecanoyl phorbol-13 acetate (TPA) and staurosporine, an activator and inhibitor, respectively, of protein kinase C (PKC). We found that staurosporine induced megakaryocytic differentiation, as revealed by the cellular ultrastructure, platelet formation, and DNA endoreduplication. In contrast, TPA induced a differentiated phenotype that more closely resembled that of the monocyte-macrophage lineage. c-myc expression was down-regulated in K562 differentiated by both TPA and staurosporine, whereas max expression did not change in either case. Although PKC enzymatic activity was low in cells terminally differentiated with TPA and staurosporine, inhibition of PKC activity by itself did not induce c-myc down-regulation. We conclude that the c-myc gene is switched off as a consequence of the differentiation process triggered by these drugs in a manner independent from PKC. Ectopic overexpression of c-Myc in K562 cells did not affect the monocytic-macrophagic and megakaryocytic differentiation, indicating that c-Myc suppression is not required for these processes in K562. Similarly, both differentiation pathways were not affected by Max overexpression or by concomitant overexpression of c-Myc and Max. This result is in contrast with the inhibition of erythroid differentiation of K562 exerted by c-Myc, suggesting divergent roles for c-Myc/Max, depending on the differentiation pathway.Supported by Grant CICYT-SAF96–0083 from the Spanish government and Biomed 96-3532 from the European Community. A. L. and P. G. are recipients of fellowships of the Spanish Ministerio de Educación y Cultura, and M. C. is the recipient of a fellowship from Gobierno Vasco.Peer reviewe

    Down regulation of c-Myc and Max genes is associated to inhibition of protein phosphatase 2A in K562 human leukemia cells

    No full text
    Treatment of the human myeloid leukemia K562 cells with the protein phosphatase inhibitors okadaic acid or calyculin A resulted in down-regulation of both c-myc and max genes at the mRNA and protein levels. The extent of the down-regulation was similar for both genes and was dependent on the dose and on the treatment time. Interestingly, c-myc and max down-regulation was concomitant with apoptosis induced by okadaic acid and calyculin A in K562 cells. The expression of c-myc and max returned to control levels after the removal of okadaic acid from the media, although apoptosis was irreversible. These effects were observed at okadaic acid concentrations (15 nM) that inhibited the activity of protein phosphatase type 2A but not of phosphatase type 1. We conclude that the inhibition of protein phosphatase 2A is associated to decreased levels of c-Myc/Max heterodimers in K562 cells.This research was supported by grant PB92-0506-C02 from DGICYT to JL, by a grant from Fundación Ramón Areces to JMO and by grants PB93-0316 and from Comunidad Autónoma de Madrid to JMP. AL and BB are recipients of predoctoral fellowships from the Ministerio de Educación y Ciencia and Gobierno Vasco, respectively.Peer Reviewe

    Fast, Reliable, and Simple Point-of-Care-like Adaptation of RT-qPCR for the Detection of SARS-CoV-2 for Use in Hospital Emergency Departments

    No full text
    During COVID-19 pandemics, the availability of testing has often been a limiting factor during patient admissions into the hospital. To circumvent this problem, we adapted an existing diagnostic assay, Seegene Allplex SARS-CoV-2, into a point-of-care-style direct qPCR (POC dqPCR) assay and implemented it in the Emergency Department of Clinical Hospital Center Rijeka, Croatia. In a 4-month analysis, we tested over 10, 000 patients and demonstrated that POC-dqPCR is robust and reliable and can be successfully implemented in emergency departments and similar near-patient settings and can be performed by medical personnel with little prior experience in qPCR
    corecore