1,110 research outputs found

    Effects of Small Increases in Corticosterone Levels on Morphology, Immune Function, and Feather Development

    Get PDF
    Stressors encountered during avian development may affect an individual’s phenotype, including immunocompetence, growth, and feather quality. We examined effects of simulated chronic low-level stress on American kestrel (Falco sparverius) nestlings. Continuous release of corticosterone, a hormone involved in the stress response, can model chronic stress in birds. We implanted 13-d-old males with either corticosterone-filled implants or shams and measured their growth, immune function, and feather coloration.We found no significant differences between groups at the end of the weeklong exposure period in morphometrics (mass, tarsus, wing length, and asymmetry), immunocompetence (cutaneous immunity, heterophil/lymphocyte ratio, and humoral immunity), or feather coloration. One week subsequent to implant removal, however, differences were detected. Sham-implanted birds had significantly longer wings and a reduced level of cutaneous immune function compared with those of birds given corticosterone-filled implants. Therefore, increases of only 2 ng/mL in basal corticosterone titer can have small but measurable effects on subsequent avian development

    Coordination-driven magnetic-to-nonmagnetic transition in manganese doped silicon clusters

    Full text link
    The interaction of a single manganese impurity with silicon is analyzed in a combined experimental and theoretical study of the electronic, magnetic, and structural properties of manganese-doped silicon clusters. The structural transition from exohedral to endohedral doping coincides with a quenching of high-spin states. For all geometric structures investigated, we find a similar dependence of the magnetic moment on the manganese coordination number and nearest neighbor distance. This observation can be generalized to manganese point defects in bulk silicon, whose magnetic moments fall within the observed magnetic-to-nonmagnetic transition, and which therefore react very sensitively to changes in the local geometry. The results indicate that high spin states in manganese-doped silicon could be stabilized by an appropriate lattice expansion

    Functional Movement Screen Scores in High School Football Players

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Matrix Metalloproteinase (MMP)-8 and MMP-9 in Cerebrospinal Fluid during Bacterial Meningitis: Association with Blood-Brain Barrier Damage and Neurological Sequelae

    Get PDF
    To evaluate the spectrum and regulation of matrix metalloproteinases (MMPs) in bacterial meningitis (BM), concentrations of MMP-2, MMP-3, MMP-8, and MMP-9 and endogenous inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were measured in the cerebrospinal fluid (CSF) of 27 children with BM. MMP-8 and MMP-9 were detected in 91% and 97%, respectively, of CSF speci-mens from patients but were not detected in control patients. CSF levels of MMP-9 were higher (P <.05) in 5 patients who developed hearing impairment or secondary epilepsy than in those who recovered without neurological deficits. Levels of MMP-9 correlated with concentrations of TIMP-1 (P <.001) and tumor necrosis factor-α (P =.03). Repeated lumbar punctures showed that levels of MMP-8 and MMP-9 were regulated independently and did not correlate with the CSF cell count. Therefore, MMPs may derive not only from granulocytes infiltrating the CSF space but also from parenchymal cells of the meninges and brain. High concentrations of MMP-9 are a risk factor for the development of postmeningitidal neurological sequela

    Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay

    Get PDF
    Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects

    Toward targeting B cell cancers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis

    Get PDF
    Some minor histocompatibility antigens (mHags) are expressed exclusively on patient hematopoietic and malignant cells, and this unique set of antigens enables specific targeting of hematological malignancies after human histocompatability leucocyte antigen (HLA)–matched allogeneic stem cell transplantation (allo-SCT). We report the first hematopoietic mHag presented by HLA class II (HLA-DQA1*05/B1*02) molecules to CD4+ T cells. This antigen is encoded by a single-nucleotide polymorphism (SNP) in the B cell lineage-specific CD19 gene, which is an important target antigen for immunotherapy of most B cell malignancies. The CD19L-encoded antigen was identified using a novel and powerful genetic strategy in which zygosity-genotype correlation scanning was used as the key step for fine mapping the genetic locus defined by pairwise linkage analysis. This strategy was also applicable for genome-wide identification of a wide range of mHags. CD19L-specific CD4+ T cells provided antigen-specific help for maturation of dendritic cells and for expansion of CD8+ mHag-specific T cells. They also lysed CD19L-positive malignant cells, illustrating the potential therapeutic advantages of targeting this novel CD19L-derived HLA class II–restricted mHag. The currently available immunotherapy strategies enable the exploitation of these therapeutic effects within and beyond allo-SCT settings

    The INFluence of Remote monitoring on Anxiety/depRession, quality of lifE, and Device acceptance in ICD patients: a prospective, randomized, controlled, single-center trial.

    Get PDF
    Leppert F, Siebermair J, Wesemann U, et al. The INFluence of Remote monitoring on Anxiety/depRession, quality of lifE, and Device acceptance in ICD patients: a prospective, randomized, controlled, single-center trial. Clinical research in cardiology : official journal of the German Cardiac Society. 2020.BACKGROUND: Impact of telemedicine with remote patient monitoring (RPM) in implantable cardioverter-defibrillator (ICD) patients on clinical outcomes has been investigated in various clinical settings with divergent results. However, role of RPM on patient-reported-outcomes (PRO) is unclear. The INFRARED-ICD trial aimed to investigate the effect of RPM in addition to standard-of-care on PRO in a mixed ICD patient cohort.; METHODS AND RESULTS: Patients were randomized to RPM (n=92) or standard in-office-FU (n=88) serving as control group (CTL). At baseline and on a monthly basis over 1 year, study participants completed the EQ-5D questionnaire for the primary outcome Quality of Life (QoL), the Hospital Anxiety and Depression Scale, and the Florida Patient Acceptance Survey questionnaire for secondary outcomes. Demographic characteristics (82% men, mean age 62.3years) and PRO at baseline were not different between RPM and CTL. Primary outcome analysis showed that additional RPM was not superior to CTL with respect to QoL over 12months [+1.2 vs.+3.9 points in CTL and RPM group, respectively (p=0.24)]. Pre-specified analyses could not identify subgroups with improved QoL by the use of RPM. Neither levels of anxiety (-0.4 vs. -0.3, p=0.88), depression (+0.3 vs.±0.0, p=0.38), nor device acceptance (+1.1 vs.+1.6, p=0.20) were influenced by additional use of RPM.; CONCLUSION: The results of the present study show that PRO were not improved by RPM in addition to standard-of-care FU. Careful evaluation and planning of future trials in selected ICD patients are warranted before implementing RPM in routine practice

    Conduction band tuning by controlled alloying of Fe into Cs2AgBiBr6 double perovskite powders

    Full text link
    Halide double perovskite semiconductors such as Cs2AgBiBr6 are widely investigated as a more stable, less toxic alternative to lead-halide perovskites in light conversion applications including photovoltaics and photoredox catalysis. However, the relatively large and indirect bandgap of Cs2AgBiBr6 limits efficient sunlight absorption. Here, we show that controlled replacement of Bi3+ with Fe3+ via mechanochemical synthesis results in a remarkable tunable absorption onset between 2.1 and ~1 eV. Our first-principles density functional theory (DFT) calculations suggest that this bandgap reduction originates primarily from a lowering of the conduction band upon introduction of Fe3+. Furthermore, we find that the tunability of the conduction band energy is reflected in the photoredox activity of these semiconductors. Finally, our DFT calculations predict a direct bandgap when >50% of Bi3+ is replaced with Fe3+. Our findings open new avenues for enhancing the sunlight absorption of double perovskite semiconductors and for harnessing their full potential in sustainable energy applications
    • …
    corecore