
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

On-demand provisioning of HEP compute
resources on cloud sites and shared HPC centers
To cite this article: G Erli et al 2017 J. Phys.: Conf. Ser. 898 052021

View the article online for updates and enhancements.

Related content
SCEAPI: A unified Restful Web API for
High-Performance Computing
Cao Rongqiang, Xiao Haili, Lu Shasha et
al.

-

The ATLAS Software Installation System
v2: a highly available system to install and
validate Grid and Cloud sites via Panda
A De Salvo, M Kataoka, A Sanchez
Pineda et al.

-

Virtual machine provisioning, code
management, and data movement design
for the Fermilab HEPCloud Facility
S Timm, G Cooper, S Fuess et al.

-

This content was downloaded from IP address 129.13.72.197 on 10/01/2018 at 12:44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197501588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-6596/898/5/052021
http://iopscience.iop.org/article/10.1088/1742-6596/898/9/092022
http://iopscience.iop.org/article/10.1088/1742-6596/898/9/092022
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062012
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062012
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062012
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052041
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052041
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052041

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

On-demand provisioning of HEP compute resources

on cloud sites and shared HPC centers

G Erli1, F Fischer1, G Fleig1, M Giffels1, T Hauth1, G Quast1,
M Schnepf1, J Heese2, K Leppert2, J Arnaez de Pedro2, R Sträter2

1 Karlsruhe Institute of Technology, Institute of Experimental Nuclear Physics (IEKP),
Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
2 1&1 Internet SE, Elgendorfer Str. 57, 56410 Montabaur, Germany

E-mail: thomas.hauth@kit.edu, joerg.heese@1und1.de

Abstract. This contribution reports on solutions, experiences and recent developments with
the dynamic, on-demand provisioning of remote computing resources for analysis and simulation
workflows. Local resources of a physics institute are extended by private and commercial cloud
sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers.

Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable
and flexible to utilize remote computing capacity via virtualization techniques or container
concepts.

We report on recent experience from incorporating a remote HPC center (NEMO Cluster,
Freiburg University) and resources dynamically requested from the commercial provider 1&1
Internet SE into our intitute’s computing infrastructure.

The Freiburg HPC resources are requested via the standard batch system, allowing HPC and
HEP applications to be executed simultaneously, such that regular batch jobs run side by side to
virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources,
a Python API and SDK as well as the possibility to upload images were available. Large scale
tests prove the capability to serve the scientific use case in the European 1&1 datacenters.

The described environment at the Institute of Experimental Nuclear Physics (IEKP) at
KIT serves the needs of researchers participating in the CMS and Belle II experiments. In
total, resources exceeding half a million CPU hours have been provided by remote sites.

1. Introduction
Grid computing in general and the Worldwide LHC Computing Grid (WLCG) specifically are
an extremely successful implementation of the concept of distributed computing and storage
and have enabled spectacular discoveries in recent years. The most prominent is arguably the
confirmation of the Higgs Boson by the CMS and ATLAS Collaborations at the LHC in the year
2012.

One thing these experiments have in common is that enormous amounts of computation and
storage requirements need to be fulfilled to achieve the best possible scientific output. Data
recorded by these experiments needs to be reconstructed, stored and analyzed. Furthermore,
Monte-Carlo simulations need to be performed in order to compare the recorded data to model
predictions. Depending on the experiment, at least a comparable amount of simulated events
needs to be available in order to achieve a sufficient statistical accuracy. In practice, many
experiments need two or three times more simulated events than recorded ones in order to test

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

for different models. With the increased data rates of the next-generation HEP experiments,
the computing requirements will also grow in the coming years.

Classically, the Grid infrastructure is installed on dedicated hardware resources which are
located in data centers and tailored to serve as Grid computing sites. This allows for a high
specialization of the installed hardware, software and trained personnel. The downside is that
these data centers can only be used by Grid computing workloads. Often universities and
funding agencies encourage research groups to share a common cluster installation and profit
from the economies of scale effect. These cluster installations are mostly tailored to suit high
performance computing (HPC) workloads, which require a tight interconnect between individual
worker nodes in the cluster.

Most shared HPC-centers have to provide an operating system which can be used by all
involved research groups. With the Scientific Linux [2] distribution, the HEP community
maintains a custom operating system to achieve reproducibility and standardization among
the many participating Grid sites. Most experiment-specific software in use today run on a
Scientific Linux installation to fulfill the requirements set by the experiment’s collaborations.

The opportunities for HEP-research to profit from such shared installations exist and in light
of the aforementioned computing challenges, every effort should be taken in order to have access
to these resources.

Furthermore, commercial cloud offerings provide standardized APIs for automated booking of
virtual machines and network configurations. By uploading customized virtual machine images,
a wide range of software and workflow requirements can be met. Thus, this services are a viable
option to acquire additional resources during peak hours, like conference preparations or for
computation campaigns.

2. Technology Choices
The technologies, which have been chosen to integrate remote resources into HEP workflows
described in this document, will be introduced in the following. Many similar or complimentary
products exist on the market today and the selection made is based on various factors which
will be listed with each product. For other use cases, one might arrive at a different selection,
which might be better suited.

2.1. HTCondor
The open-source HTCondor project provides a workload management system which is highly
configurable and modular [3]. Batch processing workflows can be submitted and are then
forwarded by HTCondor to idle resources. HTCondor maintains a resource pool, which worker
nodes in a local or remote cluster can join. Once HTCondor has verified the authenticity and
features of the newly joined machines, computing jobs are automatically transferred. Special
features to connect from within isolated network zones, for example via a NAT portal, to the
central HTCondor pool are available. The Connection Brokering (CCB) service is especially
valuable to connect virtual machines to the central pool [3]. These features and the well-known
ability of HTCondor to scale to O(100k) of parallel batch jobs lets us decide to use HTCondor
as a workload management system.

2.2. ROCED
Besides a cloud site and a flexible batch system, a central component is required to
dynamically manage the virtual machines depending on the demand for computing resources.
For this purpose, the cloud meta-scheduler ROCED (Reponsive On-demand Cloud Enabled
Deployment) has been developed at the IEKP since 2010 [4]. ROCED is written in a modular
fashion and the interfaces to batch systems and cloud sites are implemented as modules. This
makes ROCED independent of a specific user group or workflow. For the described use case,

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

the HTCondor and a special HPC-cloud module were implemented. The ROCED source code
is available on GitHub [5].

3. Job Submission and Worklow Management
An overview of the jobs submission and management of jobs and the virtual machine
management is given in Figure 1. The user submits jobs to the central HTCondor instance which
distributes the jobs automatically to available resources. Users can add a special HTCondor
ClassAd flag to signal they need access to the local storage resources. In this case, jobs are only
scheduled to local resources. Otherwise jobs can also be submitted to remote cloud sites. Apart
from the possibility to request local storage resources, the user does not need to track where
jobs are run as the same HTCondor tools can be used to monitor, manage and debug local and
remote jobs.

monitor
jobs

jobs

jobs

Figure 1. Schematic overview of the submission and management of jobs and virtual machines.
The central component is HTCondor, which collects user jobs and distributes them to the
available resources. The ROCED cloud scheduler component starts remote VMs on-demand.

4. Hybrid HPC System
The concept of a hybrid HPC system, which can run native batch jobs and jobs in a fully-
virtualized environment, has been developed together with colleagues from the University of
Freiburg [6]. Here, a HPC cluster with 16,000 cores is shared between three diverse user groups:
elementary particle physics, neuroscience and microsystem engineering. Very early in the project
it became clear that satisfying the software requirements for these three groups with the same
software installation would be tough. While some groups rely on native access to the hardware,
like InfiniBand for MPI, other groups, including our institute, require a dedicated operating
system and a elaborate software stack. Instead of losing synergy effects by a static splitting of
the cluster, we decided to implement a flexible virtualization approach. Here, the batch system
of the cluster can either be used to start native jobs or to book virtual machines. These machines
are managed via an OpenStack installation which runs alongside the batch client on each cluster
node. Requesting OpenStack VMs via the scheduling process of the batch achieves a seamless
integration of native and VM-based jobs.

The ROCED cloud scheduler has a module to request additional virtual machines on this
shared HPC system every time the local resources are not sufficient to process queued jobs. This
is a very dynamic procedure and depends on the submission pattern of the institute users. As
soon as a virtual machine has been booted it connects to the central HTCondor instance and a
job is started within seconds. Once the job has been completed, the virtual machine continues
to accept and process job from HTCondor. If no additional jobs are available, the machine will
automatically shut-down after a predefined wait period of some minutes.

Figure 2 shows a period of 36 days of HPC cluster usage. Up to 9000 virtual cores were used
at the same time and filled by user jobs.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

10000
20000
30000
40000
50000

0 5 10 15 20 25 30 35 40
Time [days]

0
1000
2000
3000
4000
5000
6000
7000
8000

Jo
b

s|
S

lo
ts

Slots requested

Slots available

Slots draining

Jobs available

Figure 2. Utilization of the shared HPC system by booted virtual machines. Up to 9000 virtual
cores were in use at peak times. The fluctuations in the utilization reflects the patterns of the
submission of jobs by our institute users. The number of draining slots displays the amount of
job slots still processing jobs while the rest of the node’s slot are already empty.

5. Local Opportunistic Resources with Docker
In addition to use remote HPC or cloud resources, also the local institute’s computing resources
can be used in a more optimal way. Desktop machines today are quite powerful dual-core or
even quad-core systems and are often idle with only the browser or email client in use. Our
institute has more than 150 desktop CPU cores with sufficient RAM which can be used to process
computation jobs during idle time of machines and during the night phases and the weekend.
In order to provide our users with a pleasant and modern desktop experience, we employ an
up-to-date Ubuntu installation on our desktop machines, while most of our experiment software
requires a Scientific Linux installation.

In the past, we employed OpenStack to host virtual machines with the proper OS. However
we recently moved to using the Docker container solution in conjunction with HTCondor as this
provides a more lightweight solution, both in administrative work and resource consumption. A
recent HTCondor startd client is able to start a selected Docker container automatically on a
compute host.

Using this technique, Docker containers, which provide the exact same system libraries and
binaries as if the jobs were running within a native Scientific Linux, are used for the user job
execution. The required HTCondor settings to start the Docker container are automatically
added to a user job if it gets scheduled to one of the Docker desktop nodes.

6. Commercial Cloud Offerings from 1&1 Internet SE
Commercial cloud provides are an alternative way to cushion peak demand. The 1&1 Internet
SE is one of Europe’s leading internet service provider with a strong global presence. Jointly,
the 1&1 and the KIT teams executed a pilot project to evaluate the Cloud Server product for
HEP jobs. The Cloud Server product offers dynamic provisioning of VMs and accurate billing
depending on the machines uptime and configuration.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

A backend to ROCED for the Cloud Server API [7] was developed to enable the demand-
driven scheduling of VMs. We uploaded a custom VM-Image with Scientic Linux 6.7, CVMFS
and HTCondor support to the 1&1 Cloud Server and also setup a dedicated CVMFS squid proxy
machine which gets automatically booted by ROCED if any worker nodes are running.

We took advantage of the fact that the load distribution is lower during night time due to
the typical customer profile of 1&1. This allows to boot many cores without competing with or
affecting other customers of 1&1.

0 2 4 6 8 10 12 14 16
Time [days]

0

100

200

300

400

500

600

700

800

900

N
u

m
b

er
 o

f
sl

o
ts

Slots requested

Slots available

Slots draining

Figure 3. Utilization plot of the 1&1 Cloud Server offering over a period of 16 days. ROCED
was configured to boot up to 800 virtual cores, if there is sufficient demand, and the operating
period was limited to the night hours.

Figure 3 shows the resource utilization over a period of 16 days. ROCED was configured
to only boot virtual machines during the night time and a maximum number of 800 cores. As
visible in the Figure, the resources were fully utilized almost every night with user jobs. In
nights were not all cores were provisioned, no user jobs were submitted to HTCondor or all user
jobs could be handled by local resources.

This test phase proved that jobs of users from multiple experiments run reliably on the remote
and virtual worker nodes and API-based scheduling without manual intervention is possible.

7. Conclusion
Our institute runs a flexible computing system which is able to leverage resources from
multiple sources: a shared HPC System using virtualization with OpenStack, local opportunistic
resources with Docker and commerical cloud offerings, for example the 1&1 Internet Cloud
Server. This mix provides the institutes’s users with additional, on-demand resources in peak
hours. Using HTCondor for job submission and management and ROCED for provisioning of
remote resources, this integration is transparent to the users. Since we started to use external
resources in our production batch farm, more than half a million CPU hours have been provided
by remote sites so far.

This dynamic resource management model gradually replaces our institute’s private HEP-
only cluster: both in ease of use and overall computing capacity.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052021 doi :10.1088/1742-6596/898/5/052021

References
[1] OpenStack website https://www.openstack.org (17/02/2016)
[2] ScientificLinux website https://www.scientificlinux.org/ (17/02/2016)
[3] HTCondor website http://research.cs.wisc.edu/htcondor (17/02/2016)
[4] Hauth T, Quast G, Kunze M, Büge V, Scheurer A and Baun C 2011 Journal of Physics: Conference Series

331 062034 Dynamic Extensions of Batch Systems with Cloud Resources URL
http://stacks.iop.org/1742-6596/331/i=6/a=062034

[5] Erli G, Fleig G, Hauth T and Riedel S Roced cloud meta-scheduler project website
https://github.com/roced-scheduler/ROCED (17/02/2016)

[6] Meier K, Fleig G, Hauth T, Janczyk M, Quast G, von Suchodoletz D and Wiebelt B 2016 Journal of
Physics: Conference Series 762 012012 Dynamic provisioning of a HEP computing infrastructure on a
shared hybrid HPC system URL http://stacks.iop.org/1742-6596/762/i=1/a=012012

[7] 1&1 Cloud Server SDK Python https://github.com/1and1/oneandone-cloudserver-sdk-python

(29.9.2016)

