43 research outputs found

    Extraction of the pion distribution amplitude from polarized muon pair production

    Get PDF
    We consider the production of muon pairs from the scattering of pions on longitudinally polarized protons. We calculate the cross section and the single spin asymmetry for this process, taking into account pion bound state effects. We work in the kinematic region where the photon has a large longitudinal momentum fraction, which allows us to treat the bound state problem perturbatively. Our predictions are directly proportional to the pion distribution amplitude. A measurement of the polarized Drell-Yan cross section thus allows the determination of the shape of the pion distribution amplitude.Comment: 13 pages, using revtex, two figures added separately as one uuencoded Z-compressed fil

    Non-perturbative renormalization of three-quark operators

    Get PDF
    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MSbar scheme at mu=2 GeV.Comment: 49 pages, 3 figure

    Universal behavior of baryons and mesons' transverse momentum distributions in the framework of percolation of strings

    Full text link
    In the framework of percolation of strings, we present predictions for the RAAR_{AA} and RCPR_{CP} for mesons and baryons and for pˉ/π0\bar{p}/\pi^{0} ratios at LHC energies.Comment: Presented at "Heavy Ion Collisions at the LHC: last call for predictions", Geneva Switzerland, May 14th-June 8t

    Boost-Invariant Running Couplings in Effective Hamiltonians

    Get PDF
    We apply a boost-invariant similarity renormalization group procedure to a light-front Hamiltonian of a scalar field phi of bare mass mu and interaction term g phi^3 in 6 dimensions using 3rd order perturbative expansion in powers of the coupling constant g. The initial Hamiltonian is regulated using momentum dependent factors that approach 1 when a cutoff parameter Delta tends to infinity. The similarity flow of corresponding effective Hamiltonians is integrated analytically and two counterterms depending on Delta are obtained in the initial Hamiltonian: a change in mu and a change of g. In addition, the interaction vertex requires a Delta-independent counterterm that contains a boost invariant function of momenta of particles participating in the interaction. The resulting effective Hamiltonians contain a running coupling constant that exhibits asymptotic freedom. The evolution of the coupling with changing width of effective Hamiltonians agrees with results obtained using Feynman diagrams and dimensional regularization when one identifies the renormalization scale with the width. The effective light-front Schroedinger equation is equally valid in a whole class of moving frames of reference including the infinite momentum frame. Therefore, the calculation described here provides an interesting pattern one can attempt to follow in the case of Hamiltonians applicable in particle physics.Comment: 24 pages, LaTeX, included discussion of finite x-dependent counterterm

    Generalized Parton Distributions at x->1

    Full text link
    Generalized parton distributions at large xx are studied in perturbative QCD approach. As x→1x\to 1 and at finite tt, there is no tt dependence for the GPDs which means that the active quark is at the center of the transverse space. We also obtain the power behavior: Hqπ(x,Ο,t)∌(1−x)2/(1−Ο2)H_q^\pi(x,\xi,t)\sim (1-x)^2/(1-\xi^2) for pion; Hq(x,Ο,t)∌(1−x)3/(1−Ο2)2H_q(x,\xi,t)\sim (1-x)^3/(1-\xi^2)^2 and Eq(x,Ο,t)∌(1−x)5/(1−Ο2)3f(Ο)E_q(x,\xi,t)\sim (1-x)^5/(1-\xi^2)^3f(\xi) for nucleon, where f(Ο)f(\xi) represents the additional dependence on Ο\xi.Comment: 7 pages, 2 figure

    Same-sign W pair production as a probe of double parton scattering at the LHC

    Full text link
    We study the production of same-sign W boson pairs at the LHC in double parton interactions. Compared with simple factorised double parton distributions (dPDFs), we show that the recently developed dPDFs, GS09, lead to non-trivial kinematic correlations between the W bosons. A numerical study of the prospects for observing this process using same-sign dilepton signatures, including same-sign WWjj, di-boson and heavy flavour backgrounds, at 14 TeV centre-of-mass energy is then performed. It is shown that a small excess of same-sign dilepton events from double parton scattering over a background dominated by single scattering WZ(gamma*) production could be observed at the LHC.Comment: 14 pages, 8 figures. Added references, slight changes in the text

    Isolating a light Higgs boson from the di-photon background at the LHC

    Full text link
    We compute the QCD corrections to the gluon fusion subprocess gg to gamma gamma, which forms an important component of the background to the search for a light Higgs boson at the LHC. We study the dependence of the improved pp to gamma gamma X background calculation on the factorization and renormalization scales, on various choices for photon isolation cuts, and on the rapidities of the photons. We also investigate ways to enhance the statistical significance of the Higgs signal in the di-photon channel.Comment: Additional reference included, 17 pages, 16 figure files, revte

    Identifying top partners at LHC

    Get PDF
    We systematically study the possible signals at LHC of new vector-like quarks mainly coupled to the third generation. We consider heavy quarks T, B, X, Y of charges 2/3, -1/3, 5/3 and -4/3, respectively, in SU(2)_L isosinglets T_{L,R}, B_{L,R}, or isodoublets (T B)_{L,R}, (X T)_{L,R} or (B Y)_{L,R}. Analyses based on a fast detector simulation are presented for twelve different final states containing one, two, three or four charged leptons in several invariant mass regions, also considering various b quark multiplicities. It is shown that with the combination of the different channels the new quarks can be identified and their charged and neutral decays established. The comparison among final states also shows that the single lepton one offers the best discovery potential at LHC. For heavy quark masses of 500 GeV, the 5 sigma discovery luminosities range from 0.16 fb^-1 for a (X T)_{L,R} doublet to 1.9 fb^-1 for a B_{L,R} singlet.Comment: LaTeX 89 pages, 111 PS figures. Added one model to the analysis in all final states, plus one subsection and some references. Final version to appear in JHE

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore