6 research outputs found

    Distinct epidemiology and resistance mechanisms affecting ceftolozane/tazobactam in Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal depicted by WGS

    Get PDF
    STEP and SUPERIOR study groups.[Objectives] To analyse the epidemiology, the resistome and the virulome of ceftolozane/tazobactam-susceptible or -resistant Pseudomonas aeruginosa clinical isolates recovered from surveillance studies in Portugal (STEP, 2017–18) and Spain (SUPERIOR, 2016–17).[Methods] P. aeruginosa isolates were recovered from intra-abdominal, urinary tract and lower respiratory tract infections in ICU patients admitted to 11 Portuguese and 8 Spanish hospitals. MICs were determined (ISO-standard broth microdilution, EUCAST 2020 breakpoints). A subset of 28 ceftolozane/tazobactam-resistant P. aeruginosa isolates were analysed and compared with 28 ceftolozane/tazobactam-susceptible P. aeruginosa strains by WGS.[Results] Clonal complex (CC) 235 (27%) and CC175 (18%) were the most frequent, followed by CC244 (13%), CC348 (9%), CC253 (5%) and CC309 (5%). Inter-hospital clonal dissemination was observed, limited to a geographical region (CC235, CC244, CC348 and CC253 in Portugal and CC175 and CC309 in Spain). Carbapenemases were detected in 25 isolates (45%): GES-13 (13/25); VIM type (10/25) [VIM-2 (4/10), VIM-20 (3/10), VIM-1 (2/10) and VIM-36 (1/10)]; and KPC-3 (2/25). GES-13-CC235 (13/15) and VIM type-CC175 (5/10) associations were observed. Interestingly, KPC-3 and VIM-36 producers showed ceftolozane/tazobactam-susceptible phenotypes. However, ceftolozane/tazobactam resistance was significantly associated with GES-13 and VIM-type carbapenemase production. Six non-carbapenemase producers also displayed ceftolozane/tazobactam resistance, three of them showing known ceftolozane/tazobactam resistance-associated mutations in the PBP3 gene, ftsI (R504C and F533L). Overall, an extensive virulome was identified in all P. aeruginosa isolates, particularly in carbapenemase-producing strains.[Conclusions] GES-13-CC235 and VIM type-CC175 were the most frequent MDR/XDR P. aeruginosa clones causing infections in Portuguese and Spanish ICU patients, respectively. Ceftolozane/tazobactam resistance was mainly due to carbapenemase production, although mutations in PBP-encoding genes may additionally be involved.The study was funded by MSD Portugal (protocol VP6918) and MSD Spain (protocol MSD-CEF-2016-01). This study was also supported by Plan Nacional de I + D + i 2013–16 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [RD16/0016/0001, RD16/0016/0004, RD16/0016/0006, RD16/0016/0007, RD16/0016/0010 and REIPI RD16/0016/0011], co-financed by the European Development Regional Fund ‘A way to achieve Europe’ (EDRF), Operative Program Intelligent Growth 2014–20. M.H.-G. is supported by a research contract from a European Project [IMI-JU-9–2013, Ref. iABC - 115721–2].Peer reviewe

    Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review

    No full text
    International audiencePneumonia is one of the leading hospital-acquired infections worldwide and has an important impact. Although preventive measures for ventilator-associated pneumonia (VAP) are well known, less is known about appropriate measures for prevention of hospital-acquired pneumonia (HAP)

    Presence of Chromosomal <i>crpP</i>-<i>like</i> Genes Is Not Always Associated with Ciprofloxacin Resistance in <i>Pseudomonas aeruginosa</i> Clinical Isolates Recovered in ICU Patients from Portugal and Spain

    No full text
    CrpP enzymes have been recently described as a novel ciprofloxacin-resistance mechanism. We investigated by whole genome sequencing the presence of crpP-genes and other mechanisms involved in quinolone resistance in MDR/XDR-Pseudomonas aeruginosa isolates (n = 55) with both ceftolozane-tazobactam susceptible or resistant profiles recovered from intensive care unit patients during the STEP (Portugal) and SUPERIOR (Spain) surveillance studies. Ciprofloxacin resistance was associated with mutations in the gyrA and parC genes. Additionally, plasmid-mediated genes (qnrS2 and aac(6′)-Ib-cr) were eventually detected. Ten chromosomal crpP-like genes contained in related pathogenicity genomic islands and 6 different CrpP (CrpP1-CrpP6) proteins were found in 65% (36/55) of the isolates. Dissemination of CrpP variants was observed among non-related clones of both countries, including the CC175 (Spain) high-risk clone and CC348 (Portugal) clone. Interestingly, 5 of 6 variants (CrpP1-CrpP5) carried missense mutations in an amino acid position (Gly7) previously defined as essential conferring ciprofloxacin resistance, and decreased ciprofloxacin susceptibility was only associated with the novel CrpP6 protein. In our collection, ciprofloxacin resistance was mainly due to chromosomal mutations in the gyrA and parC genes. However, crpP genes carrying mutations essential for protein function (G7, I26) and associated with a restored ciprofloxacin susceptibility were predominant. Despite the presence of crpP genes is not always associated with ciprofloxacin resistance, the risk of emergence of novel CrpP variants with a higher ability to affect quinolones is increasing. Furthermore, the spread of crpP genes in highly mobilizable genomic islands among related and non-related P. aeruginosa clones alert the dispersion of MDR pathogens in hospital settings

    Imipenem-Relebactam Susceptibility in Enterobacterales Isolates Recovered from ICU Patients from Spain and Portugal (SUPERIOR and STEP Studies).

    Get PDF
    Imipenem-relebactam is a novel β-lactam-β-lactamase inhibitor combination. We evaluated the in vitro activity of imipenem-relebactam and comparators against Enterobacterales clinical isolates recovered in 8 Spanish and 11 Portuguese intensive care units (ICUs) (SUPERIOR, 2016-2017; STEP, 2017-2018). Overall, 747 Enterobacterales isolates (378 Escherichia coli, 252 Klebsiella spp., 64 Enterobacter spp., and 53 other species) were prospectively collected from ICU patients with complicated intraabdominal (cIAI), complicated urinary tract (cUTI), and lower respiratory tract (LRTI) infections. MICs were determined (ISO-broth microdilution), and whole-genome sequencing (WGS) was performed in a subset of isolates displaying susceptible and resistant imipenem-relebactam MICs. Imipenem-relebactam (98.7% susceptible) showed similar activity to ceftazidime-avibactam (99.5% susceptible) and higher than ceftolozane-tazobactam (86.9% susceptible). Imipenem-relebactam was inactive against 1.3% (10/747) isolates, all of them due to carbapenemase production (9 K. pneumoniae and 1 E. cloacae). Imipenem-relebactam was active against 100% of extended-spectrum β-lactamase (ESBL)-E. coli and ESBL-Klebsiella spp. isolates and 80.4% of carbapenemase-Klebsiella spp. producers. Carbapenemase genes were confirmed by WGS in 41 Klebsiella spp.: OXA-48 (20/41), KPC-3 (14/41), OXA-181 (4/41), NDM-1 (1/41), OXA-48 + VIM-2 (1/41), and KPC-3 + VIM-2 (1/41). In Klebsiella spp. isolates, relebactam restored imipenem susceptibility in all KPC-3 producers, and resistant isolates (7/41) were mostly OXA-48 + CTX-M-15-K. pneumoniae high-risk clones (7/9). Intercountry differences were detected as follows: OXA-48 (17/21) was dominant in Spain, unlike KPC-3 (14/15) in Portugal. Imipenem-relebactam was 100% active against CTX-M-15-ST131-H30Rx-E. coli high-risk clone, predominant in both countries. Our results depict the potential role of imipenem-relebactam in ICU patients with cIAIs, cUTIs, and LRTIs due to wild-type ESBL- and carbapenemase-producing Enterobacterales, particularly KPC producers. IMPORTANCE We comparatively evaluate the in vitro activity of a drug combination consisting of a carbapenem (imipenem) and a novel inhibitor of beta-lactamases (relebactam), a mechanism that destroys beta-lactam antibiotics. We assess the activity against a collection of Enterobacterales clinical isolates recovered from difficult-to-treat infections in patients admitted to different intensive care units in Portugal and Spain. Imipenem-relebactam shows excellent activity in avoiding common resistance mechanisms in this setting, such as extended-spectrum beta-lactamases and carbapenemases widely distributed, including KPCs. We show few resistant isolates

    In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies)

    Get PDF
    [Objectives] To study the in vitro activity of imipenem/relebactam and comparators and the imipenem/relebactam resistance mechanisms in a Pseudomonas aeruginosa collection from Portugal (STEP, 2017-18) and Spain (SUPERIOR, 2016-17) surveillance studies.[Methods] P. aeruginosa isolates (n = 474) were prospectively recovered from complicated urinary tract (cUTI), complicated intra-abdominal (cIAI) and lower respiratory tract (LRTI) infections in 11 Portuguese and 8 Spanish ICUs. MICs were determined (ISO broth microdilution). All imipenem/relebactam-resistant P. aeruginosa isolates (n = 30) and a subset of imipenem/relebactam-susceptible strains (n = 32) were characterized by WGS.[Results] Imipenem/relebactam (93.7% susceptible), ceftazidime/avibactam (93.5% susceptible) and ceftolozane/tazobactam (93.2% susceptible) displayed comparable activity. The imipenem/relebactam resistance rate was 6.3% (Portugal 5.8%; Spain 8.9%). Relebactam restored imipenem susceptibility to 76.9% (103/134) of imipenem-resistant isolates, including MDR (82.1%; 32/39), XDR (68.8%; 53/77) and difficult-to-treat (DTR) isolates (67.2%; 45/67). Among sequenced strains, differences in population structure were detected depending on the country: clonal complex (CC)175 and CC309 in Spain and CC235, CC244, CC348 and CC253 in Portugal. Different carbapenemase gene distributions were also found: VIM-20 (n = 3), VIM-1 (n = 2), VIM-2 (n = 1) and VIM-36 (n = 1) in Spain and GES-13 (n = 13), VIM-2 (n = 3) and KPC-3 (n = 2) in Portugal. GES-13-CC235 (n = 13) and VIM type-CC175 (n = 5) associations were predominant in Portugal and Spain, respectively. Imipenem/relebactam showed activity against KPC-3 strains (2/2), but was inactive against all GES-13 producers and most of the VIM producers (8/10). Mutations in genes affecting porin inactivation, efflux pump overexpression and LPS modification might also be involved in imipenem/relebactam resistance.[Conclusions] Microbiological results reinforce imipenem/relebactam as a potential option to treat cUTI, cIAI and LRTI caused by MDR/XDR P. aeruginosa isolates, except for GES-13 and VIM producers.The study was funded by MSD Portugal (protocol VP6918) and MSD Spain (protocol MSD-CEF-2016-01). This study was also supported by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (RD16/0016/0001, RD16/0016/0004, RD16/0016/0006, RD16/0016/0007, RD16/0016/0010 and REIPI RD16/0016/0011), co-financed by the European Development Regional Fund ‘A way to achieve Europe’ (ERDF), Operative program Intelligent Growth 2014–2020 and CIBER de Enfermedades Infecciosas (CIBERINFEC) (CB21/13/00084), Instituto de Salud Carlos III, Madrid, Spain.Peer reviewe
    corecore