37 research outputs found

    Effect of environmental complexity and stocking density on fear and anxiety in broiler chickens

    Get PDF
    Barren housing and high stocking densities may contribute to negative affective states in broiler chickens, reducing their welfare. We investigated the effects of environmental complexity and stocking density on broilers’ attention bias (measure of anxiety) and tonic immobility (measure of fear). In Experiment 1, individual birds were tested for attention bias (n = 60) and in Experiment 2, groups of three birds were tested (n = 144). Tonic immobility testing was performed on days 12 and 26 (n = 36) in Experiment 1, and on day 19 (n = 72) in Experiment 2. In Experiment 1, no differences were observed in the attention bias test. In Experiment 2, birds from high-complexity pens began feeding faster and more birds resumed feeding than from low-complexity pens following playback of an alarm call, suggesting that birds housed in the complex environment were less anx-ious. Furthermore, birds housed in high-density or high-complexity pens had shorter tonic immobility durations on day 12 compared to day 26 in Experiment 1. In Experiment 2, birds from high-density pens had shorter tonic immobility durations than birds housed in low-density pens, which is contrary to expectations. Our results suggest that birds at 3 weeks of age were less fearful under high stocking density conditions than low density conditions. In addition, results indicated that the complex environment improved welfare of broilers through reduced anxiety

    Individuality of a group: detailed walking ability analysis of broiler flocks using optical flow approach

    Get PDF
    Impaired walking ability is one of the most important factors affecting broiler welfare. Routine monitoring of walking ability provides insights in the welfare status of a flock and assists farmers in taking remedial measures at an early stage. Several computer vision techniques have been developed for automated assessment of walking ability, providing an objective and biosecure alternative to the currently more subjective and time-consuming manual assessment of walking ability. However, these techniques mainly focus on assessment of averages at flock level using pixel movement. Therefore, the aim of this study was to investigate the potential of optical flow algorithms to identify flock activity, distribution and walking ability in a commercial setting on levels close to individual monitoring. We used a combination of chicken segmentation and optical flow methods, where chicken contours were first detected and were then used to identify activity, spatial distribution, and gait score distribution (i.e. walking ability) of the flock via optical flow. This is a step towards focusing more on individual chickens in an image and its pixel representation. In addition, we predicted the gait score distribution of the flock, which is a more detailed assessment of broiler walking ability compared to average gait score of the flock, as slight changes in walking ability are more likely to be detected when using the distribution compared to the average score. We found a strong correlation between predicted and observed gait scores (R2 = 0.97), with separate gait scores all having R2 > 0.85. Thus, the algorithm used in this study is a first step to measure broiler walking ability automatically in a commercial setting on a levels close to individual monitoring. These validation results of the developed automatic monitoring of flock activity, distribution and gait score are promising, but further validation is required (e.g. for chickens at a younger age, with very low and very high gait scores)

    Seeing is caring – automated assessment of resource use of broilers with computer vision techniques

    Get PDF
    Routine monitoring of broiler chickens provides insights in the welfare status of a flock, helps to guarantee minimum defined levels of animal welfare and assists farmers in taking remedial measures at an early stage. Computer vision techniques offer exciting potential for routine and automated assessment of broiler welfare, providing an objective and biosecure alternative to the current more subjective and time-consuming methods. However, the current state-of-the-art computer vision solutions for assessing broiler welfare are not sufficient to allow the transition to fully automated monitoring in a commercial environment. Therefore, the aim of this study was to investigate the potential of computer vision algorithms for detection and resource use monitoring of broilers housed in both experimental and commercial settings, while also assessing the potential for scalability and resource-efficient implementation of such solutions. This study used a combination of detection and resource use monitoring methods, where broilers were first detected using Mask R-CNN and were then assigned to a specific resource zone using zone-based classifiers. Three detection models were proposed using different annotation datasets: model A with annotated broilers from a research facility, model B with annotated broilers from a commercial farm, and model A+B where annotations from both environments were combined. The algorithms developed for individual broiler detection performed well for both the research facility (model A, F1 score > 0.99) and commercial farm (model A+B, F1 score > 0.83) test data with an intersection over union of 0.75. The subsequent monitoring of resource use at the commercial farm using model A+B for broiler detection, also performed very well for the feeders, bale and perch (F1 score > 0.93), but not for the drinkers (F1 score = 0.28), which was likely caused by our evaluation method. Thus, the algorithms used in this study are a first step to measure resource use automatically in commercial application and allow detection of a large number of individual animals in a non-invasive manner. From location data of every frame, resource use can be calculated. Ultimately, the broiler detection and resource use monitoring might further be used to assess broiler welfare

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    What do young adolescents think about taking part in longitudinal self-harm research?: findings from a school-based study

    Get PDF
    Background: Research about self-harm in adolescence is important given the high incidence in youth, and strong links to suicide and other poor outcomes. Clarifying the impact of involvement in school based self-harm studies on young adolescents is an ethical priority given heightened risk at this developmental stage. Methods: Here, 594 school-based students aged mainly 13-14 years completed a survey on self-harm at baseline and again 12-weeks later. Change in mood following completion of each survey, ratings and thoughts about participation, and responses to a mood-mitigation activity were analysed using a multi-method approach. Results: Baseline participation had no overall impact on mood. However, boys and girls reacted differently to the survey depending on self-harm status. Having a history of self-harm had a negative impact on mood for girls, but a positive impact on mood for boys. In addition, participants rated the survey in mainly positive/neutral terms, and cited benefits including personal insight and altruism. At follow-up, there was a negative impact on mood following participation, but no significant effect of gender or self-harm status. Ratings at follow-up were mainly positive/neutral. Those who had self-harmed reported more positive and fewer negative ratings than at baseline: the opposite pattern of response was found for those who had not self-harmed. Mood mitigation activities were endorsed. Conclusions: Self-harm research with youth is feasible in school settings. Most young people are happy to take part and cite important benefits. However, the impact of participation in research appears to vary according to gender, self-harm risk and method/time of assessment. The impact of repeated assessment requires clarification. Simple mood-elevation techniques may usefully help to mitigate distress

    Vaccinia Virus Protein C6 Is a Virulence Factor that Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7

    Get PDF
    Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-β (IFN-β) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7

    Six new loci associated with body mass index highlight a neuronal influence on body weight regulation

    Get PDF
    Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 × 10−8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity

    Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.

    Get PDF
    The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP, PLA2G6, and IRF4, and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
    corecore