23 research outputs found

    Present and Future Opportunities in Imaging the Ubiquitin System (Ub-System)

    Get PDF
    From yeast to mammalian cells, ubiquitination is one of the most conserved, and reversible, eukaryotic post-translational modifications (PTMs) responsible for controlling nearly all cellular processes. Potentially, every single eukaryotic cell can accomplish different ubiquitination processes at once, which in turn control the execution of specific cellular events in time and space with different biological significance (e.g., protein degradation or protein–protein interaction). Overall, all these signals are highly dynamic and need to be finely integrated to achieve a proper cellular response. Altogether, ubiquitination appears to be an extremely complex process, likely more than any other PTMs. Until a few years ago, the prevailing experimental approaches to investigate the different aspects of the ubiquitin system entailed genetic and biochemical analysis. However, recently, reagents and technologies have been developed enabling microscopy-based imaging of ubiquitination to enter the scene. In this paper, we discuss the progress made with conventional (confocal fluorescence microscopy) and non-conventional non-linear microscopy (Atomic Force Microscopy—AFM, Coherent Anti-Stokes Raman Scattering—CARS, Stimulated Raman Scattering—SRS) and we speculate on future developments

    Cellular Contact Guidance on Liquid Crystalline Networks with Anisotropic Roughness

    Get PDF
    : Cell contact guidance is widely employed to manipulate cell alignment and differentiation in vitro. The use of nano- or micro-patterned substrates allows efficient control of cell organization, thus opening up to biological models that cannot be reproduced spontaneously on standard culture dishes. In this paper, we explore the concept of cell contact guidance by Liquid Crystalline Networks (LCNs) presenting different surface topographies obtained by self-assembly of the monomeric mixture. The materials are prepared by photopolymerization of a low amount of diacrylate monomer dissolved in a liquid crystalline solvent, not participating in the reaction. The alignment of the liquid crystals, obtained before polymerization, determines the scaffold morphology, characterized by a nanometric structure. Such materials are able to drive the organization of different cell lines, e.g., fibroblasts and myoblasts, allowing for the alignment of single cells or high-density cell cultures. These results demonstrate the capabilities of rough surfaces prepared from the spontaneous assembly of liquid crystals to control biological models without the need of lithographic patterning or complex fabrication procedures. Interestingly, during myoblast differentiation, also myotube structuring in linear arrays is observed along the LCN fiber orientation. The implementation of this technology will open up to the formation of muscular tissue with well-aligned fibers in vitro mimicking the structure of native tissues

    scaffold characterization using nlo multimodal microscopy in metrology for regenerative medicine

    Get PDF
    Metrology in regenerative medicine aims to develop traceable measurement technologies for characterizing cellular and macromolecule behaviour in regenerative medicine products and processes. One key component in regenerative medicine is using three-dimensional porous scaffolds to guide cells during the regeneration process. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural properties that can be derived quantitatively from scaffolds images. This paper discuss the results obtained with the multimodal NLO microscope recently realized in our laboratory in characterizing 3D tissue engineered (TE) scaffolds colonized from human Mesenchimal stem cells (hMSC), focusing on the study of the three-dimensional metrological parameters

    Au-Coated Ni80Fe20 Submicron Magnetic Nanodisks: Interactions With Tumor Cells

    Get PDF
    Effective interaction and accumulation of nanoparticles (NPs) within tumor cells is crucial for NP-assisted diagnostic and therapeutic biomedical applications. In this context, the shape and size features of NPs can severely influence the strength of adhesion between NPs and cell and the NP internalization mechanisms. This study proved the ability of the PT45 and A549 tumor cells to uptake and retain magnetic Au-coated Ni80Fe20 nanodisks (NDs) prepared by means of a bottom–up self-assembling nanolithography technique assisted by polystyrene nanospheres. The chosen geometrical parameters, i.e., diameter (≈650 nm) and thickness (≈30 nm), give rise to magnetic domain patterns arranged in vortex state at the magnetic remanence. PT45 and A549 cell lines were cultured in the presence of different concentrations of Au-coated Ni80Fe20 nanodisks, and their biocompatibility was evaluated by viability and proliferation tests. Electron microscopy techniques and a combined CARS (Coherent Anti-stokes Raman Scattering) and TPL (two-photon photoluminescence) microscopy allow localizing and distinguishing the NDs within or attached to the tumor cells, without any labeling. A quantitative measurement of ND amount retained within tumor cells as a function of ND concentrations was performed by the Instrumental Neutron Activation Analysis (INAA) characterization technique

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Present and Future Opportunities in Imaging the Ubiquitin System (Ub-System)

    No full text
    From yeast to mammalian cells, ubiquitination is one of the most conserved, and reversible, eukaryotic post-translational modifications (PTMs) responsible for controlling nearly all cellular processes. Potentially, every single eukaryotic cell can accomplish different ubiquitination processes at once, which in turn control the execution of specific cellular events in time and space with different biological significance (e.g., protein degradation or protein–protein interaction). Overall, all these signals are highly dynamic and need to be finely integrated to achieve a proper cellular response. Altogether, ubiquitination appears to be an extremely complex process, likely more than any other PTMs. Until a few years ago, the prevailing experimental approaches to investigate the different aspects of the ubiquitin system entailed genetic and biochemical analysis. However, recently, reagents and technologies have been developed enabling microscopy-based imaging of ubiquitination to enter the scene. In this paper, we discuss the progress made with conventional (confocal fluorescence microscopy) and non-conventional non-linear microscopy (Atomic Force Microscopy—AFM, Coherent Anti-Stokes Raman Scattering—CARS, Stimulated Raman Scattering—SRS) and we speculate on future developments

    Biomimetic Electrospun Scaffold-Based In Vitro Model Resembling the Hallmarks of Human Myocardial Fibrotic Tissue

    No full text
    : Adverse remodeling post-myocardial infarction is hallmarked by the phenotypic change of cardiac fibroblasts (CFs) into myofibroblasts (MyoFs) and over-deposition of the fibrotic extracellular matrix (ECM) mainly composed by fibronectin and collagens, with the loss of tissue anisotropy and tissue stiffening. Reversing cardiac fibrosis represents a key challenge in cardiac regenerative medicine. Reliable in vitro models of human cardiac fibrotic tissue could be useful for preclinical testing of new advanced therapies, addressing the limited predictivity of traditional 2D cell cultures and animal in vivo models. In this work, we engineered a biomimetic in vitro model, reproducing the morphological, mechanical, and chemical cues of native cardiac fibrotic tissue. Polycaprolactone (PCL)-based scaffolds with randomly oriented fibers were fabricated by solution electrospinning technique, showing homogeneous nanofibers with an average size of 131 ± 39 nm. PCL scaffolds were then surface-functionalized with human type I collagen (C1) and fibronectin (F) by dihydroxyphenylalanine (DOPA)-mediated mussel-inspired approach (PCL/polyDOPA/C1F), in order to mimic fibrotic cardiac tissue-like ECM composition and support human CF culture. BCA assay confirmed the successful deposition of the biomimetic coating and its stability during 5 days of incubation in phosphate-buffered saline. Immunostaining for C1 and F demonstrated their homogeneous distribution in the coating. AFM mechanical characterization showed that PCL/polyDOPA/C1F scaffolds, in wet conditions, resembled fibrotic tissue stiffness with an average Young's modulus of about 50 kPa. PCL/polyDOPA/C1F membranes supported human CF (HCF) adhesion and proliferation. Immunostaining for α-SMA and quantification of α-SMA-positive cells showed HCF activation into MyoFs in the absence of a transforming growth factor β (TGF-β) profibrotic stimulus, suggesting the intrinsic ability of biomimetic PCL/polyDOPA/C1F scaffolds to sustain the development of cardiac fibrotic tissue. A proof-of-concept study making use of a commercially available antifibrotic drug confirmed the potentialities of the developed in vitro model for drug efficacy testing. In conclusion, the proposed model was able to replicate the main hallmarks of early-stage cardiac fibrosis, appearing as a promising tool for future preclinical testing of advanced regenerative therapies
    corecore