17 research outputs found

    Proyecto SAVERNet : productos de datos Lidar para dispersión elástica

    Get PDF
    Fil: Mingari, Leonardo. Servicio Meteorológico Nacional. Gerencia de Investigación, Desarrollo y Capacitación. Departamento de Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires. Instituto de Física de Buenos Aires; Argentina.En este informe se describen los producto obtenidos a partir de los datos Lidar para los canales elásticos 1064 nm y 532 nm en sus dos componentes perpendiculares. Uno de los objetivos más importante de estos productos es caracterizar la presencia de aerosoles en la atmósfera, típicamente por medio del coeficiente de extinción o atenuación de aerosoles. No obstante, la atenuación debido a aerosoles no puede ser derivada directamente a partir de la señal lidar de retrodispersión elástica, ya que es necesario asumir un valor de la razón lidar, i.e., la relación entre los coeficientes de extinción y retrodispersión de aerosoles, en los algoritmos de inversión. En consecuencia, el método utilizado aquí conduce a una importante incerteza en los productos finales. Por otro lado, la sencillez del método empleado lo hace apropiado para emplearse en una implementación operacional, tal como es nuestro propósito final, mientras que los resultados obtenidos pueden a ́un proveer información valiosa

    Model validation and data insertion with FALL3D-8.0: exploiting geostationary satellite retrievals of volcanic ash and SO2

    Get PDF
    The new version of FALL3D has recently been released with several new features and improvements in model physics, solving algorithms, code accuracy and performance [1]. Among the new features are a data insertion scheme and the ability to simulate volcanic SO2 clouds. The data insertion scheme enables users to initialise model runs from satellite retrievals. This modelling approach is useful for removing uncertainties associated with source term parameters such as the mass flow rate, plume height, source duration and start time. Here we demonstrate and validate the new data insertion scheme in FALL3D-8.0 using geostationary satellite retrievals of volcanic ash and SO2

    Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    Get PDF
    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.Fil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Leonardo, Mingari. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Collini, E.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Viramonte, Jose German. Universidad Nacional de Salta; ArgentinaFil: Romero, J.. Centro de Investigación y Difusión de Volcanes de Chile; Chile. Universidad de Atacama; ChileFil: Osores, María Soledad. Comision Nacional de Actividades Espaciales; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Mass flux decay timescales of volcanic particles due to aeolian processes in the Argentinian Patagonia steppe

    Get PDF
    We investigate the timescales of the horizontal mass flux decay of wind remobilised volcanic particles in Argentina, associated with the tephra-fallout deposit produced by the 2011–2012 Cordón Caulle (Chile) eruption. Particle removal processes are controlled by complex interactions of meteorological conditions, surface properties and particle depletion with time. We find that ash remobilisation follows a two-phase exponential decay with specific timescales for the initial input of fresh ash (1–74 days) and the following soil stabilisation processes (3–52 months). The characteristic timescales as a function of particle size shows two minimum values, identified for sizes around 2 and 19–37 μm, suggesting that these size-range particles are remobilised more easily, due to the interaction between saltation and suspension-induced processes. We find that in volcanic regions, characterised by a sudden release and a subsequent depletion of particles, the availability of wind-erodible particles plays a major role due to compaction and removal of fine particles. We propose, therefore, a simple and reproducible empirical model to describe the mass flux decay of remobilised ash in a supply-limited environment. This methodology represents an innovative approach to link field measurements of multi-sized and supply-limited deposits with saltation erosion theory.The authors are grateful to Paul Jarvis for his comments and corrections of a previous version of this manuscript as well as his insightful discussions. Sampling collection is part of the National Soil Research Program of INTA. This work was supported by the Swiss National Science Foundation (#200021 – 163152).Peer ReviewedPostprint (published version

    Aeolian Remobilisation of the 2011-Cordón Caulle Tephra-Fallout Deposit: Example of an Important Process in the Life Cycle of Volcanic Ash

    Get PDF
    Although volcanic eruptions represent short periods in the whole history of a volcano, the large amount of loose pyroclastic material produced, combined with aeolian processes, can lead to continuous, long-lasting reworking of volcanic products. Driven by wind, these processes significantly influence the geomorphology and prolong the impacts of eruptions on exposed communities and ecosystems. Since such phenomena are of interest to scientists from a range of disciplines (e.g., volcanology, atmospheric and soil sciences), a well-defined, common nomenclature is necessary to optimise the multidisciplinary characterisation of both processes and deposits. We, therefore, first describe ash wind-remobilisation processes and provide definitions for appropriate terms consistent with the World Meteorological Organisation’s (WMO’s) classification of lithometeors. Second, we apply these definitions to investigate aeolian remobilisation of the 2011 Cordón Caulle (Chile) tephra-fallout deposit, which has strongly impacted rural communities in the Argentinian Patagonia steppe. We combine field observations and a physical characterisation of systematically collected ground and airborne material in order to identify the secondary deposits associated with: (i) non-erodible surface roughness elements (e.g., vegetation and rocks) and (ii) pre-existing mounds or similar erodible bedforms. Grainsize analysis shows that wind-remobilised particles have a specific size range, from <0.4 to 500 mm, with a 95% of the material between 1 and 255 mm, median values of 25–135 mm and modes of 30–95 mm. We find that 15– 40% of the remobilised material ranges from 63–125 mm, coinciding with the size range which minimises the wind threshold friction velocity. Interestingly, particle shape analysis shows that for this size fraction, remobilised particles display the largest differences in shape descriptors (convexity, solidity and circularity) with respect to the primary ash, indicating abrasion and rounding due to saltation. Although particle (size and shape) and deposit features (morphology and structures) alone are insufficient to interpret transport mechanisms, their combination suggests that whilst saltation is the most common particle transport mechanism, suspension and creep also play an important role. As well as inferring transport mechanisms from this combined approach, we also demonstrate how the correlation of the primary volcanic source with the associated remobilised deposits is fundamental to our understanding of the life cycle of volcanic ash.Estación Experimental Agropecuaria BarilocheFil: Dominguez, Lucia. University of Geneva. Department of Earth Sciences; SuizaFil: Bonadonna, Costanza. University of Geneva. Department of Earth Sciences; SuizaFil: Forte, Pablo. Universidad Nacional de Buenos Aires. Departamento de Ciencias Geologicas; ArgentinaFil: Jarvis, Paul Antony. University of Geneva. Department of Earth Sciences; SuizaFil: Cioni, Raffaello. University of Florence. School of Mathematical, Physical and Natural Sciences. Department of Earth Sciences; ItalyFil: Mingari, Leonardo. Barcelona Supercomputing Center; SpainFil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Panebianco, Juan Esteban. Universidad Nacional de La Pampa. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Consejo Nacional de Investigaciones Cietíficas y Técnicas; Argentin

    The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase

    Get PDF
    publishedVersio

    Resuspension of volcanic fallout deposits: parametrization, modelling and operational forecast

    No full text
    En este trabajo se aborda el estudio del fenómeno de la resuspensión eólica de depósitos volcánicos de caída mediante el modelado numérico del transporte atmosférico de aerosoles. Para tal fin se incorporan parametrizaciones del flujo de emisión de cenizas volcánicas y difusión en la capa límite atmosférica en un sistema de modelado numérico para ser utilizado en el diagnóstico y pronóstico de concentración de partículas durante episodios de removilización de cenizas volcánicas. Como consecuencia, se desarrolló una nueva versión del modelo euleriano de transporte y depósito de tefra FALL3D. A fin de probar y obtener una configuración óptima del sistema de modelado WRF-ARW/FALL3D, se llevaron a cabo simulaciones numéricas tomando como casos de estudio la removilización de depósitos piroclásticos en el norte de la Patagonia, generados recientemente a consecuencia de la erupción del Complejo Volcánico Puyehue-Cordón Caulle en 2011, y la removilización de antiguos depósitos piroclásticos en el Bolsón de Fiambalá (Catamarca), generados principalmente a partir de la erupción del Complejo Volcánico Cerro Blanco hace más de 4,000 años. Esta investigación surge en el contexto de las necesidades de desarrollar y aumentar la capacidad de predicción de episodios de removilización eólica de cenizas volcánicas en la región volcánica de Los Andes, mediante la creación de un producto de pronóstico operacional a ser utilizado en el Servicio Meteorológico Nacional (SMN) para brindar soporte al VAAC (Volcanic Ash Advisory Center) de Buenos Aires y a organismos vinculados con la calidad del aire y la seguridad aeronáutica, entre otros.In this work, we study the wind resuspension of volcanic fallout deposits using a threedimensional model of atmospheric transport. Parameterizations of the emission rate of windblown ash and the atmospheric diffusion in the planetary boundary layer are implemented in a numerical modeling system to be used as a forecast tool of particle concentration levels during episodes of wind-remobilized volcanic ash. As a consequence, a new version of the FALL3D model for the transport and deposition of volcanic tephra was developed. The WRF-ARW/FALL3D modelling system was tested using two real cases: the wind-remobilized ash from volcanic fallout deposits on northern Patagonia created by the June 2011 Puyehue-Cordón Caulle eruption, and the wind remobilization of ancient pyroclastic deposits (circa 4.5 Ka Cerro Blanco eruption) from the Fiambalá Basin in northwestern Argentina. This work is framed in the context of efforts for the development of operational forecasting capabilities to predict the occurrence of volcanic ash mobilization in the Andean volcanic region. The final product is intended to provide support to Volcanic Ash Advisory Centres (VAAC) and air quality agencies.Fil: Mingari, Leonardo A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Ensemble-Based Forecast of Volcanic Clouds Using FALL3D-8.1

    Get PDF
    Operational forecasting of volcanic ash and SO2 clouds is challenging due to the large uncertainties that typically exist on the eruption source term and the mass removal mechanisms occurring downwind. Current operational forecast systems build on single-run deterministic scenarios that do not account for model input uncertainties and their propagation in time during transport. An ensemble-based forecast strategy has been implemented in the FALL3D-8.1 atmospheric dispersal model to configure, execute, and post-process an arbitrary number of ensemble members in a parallel workflow. In addition to intra-member model domain decomposition, a set of inter-member communicators defines a higher level of code parallelism to enable future incorporation of model data assimilation cycles. Two types of standard products are automatically generated by the ensemble post-process task. On one hand, deterministic forecast products result from some combination of the ensemble members (e.g., ensemble mean, ensemble median, etc.) with an associated quantification of forecast uncertainty given by the ensemble spread. On the other hand, probabilistic products can also be built based on the percentage of members that verify a certain threshold condition. The novel aspect of FALL3D-8.1 is the automatisation of the ensemble-based workflow, including an eventual model validation. To this purpose, novel categorical forecast diagnostic metrics, originally defined in deterministic forecast contexts, are generalised here to probabilistic forecasts in order to have a unique set of skill scores valid to both deterministic and probabilistic forecast contexts. Ensemble-based deterministic and probabilistic approaches are compared using different types of observation datasets (satellite cloud detection and retrieval and deposit thickness observations) for the July 2018 Ambae eruption in the Vanuatu archipelago and the April 2015 Calbuco eruption in Chile. Both ensemble-based approaches outperform single-run simulations in all categorical metrics but no clear conclusion can be extracted on which is the best option between these two.We acknowledge the use of the ERA5 Fifth generation of ECMWF atmospheric data from the Copernicus Climate Change Service; neither the European Commission nor ECMWF is responsible for the use made of the Copernicus Information and Data. We thank Alexa Van Eaton from USGS for providing us with digitalised Calbuco isopach contoursPeer reviewe

    Volcanic ash resuspension in Patagonia: numerical simulations and observations

    Get PDF
    This article belongs to the Special Issue Forecasting the Transport of Volcanic Ash in the Atmosphere https://www.mdpi.com/journal/atmosphere/special_issues/volcanic_ashResuspension of pyroclastic deposits occurs under specific atmospheric and environmental conditions and typically prolongs and exacerbates the impact associated with the primary emplacement of tephra fallout and pyroclastic density current deposits. An accurate forecasting of the phenomenon, to support Volcanic Ash Advisory Centers (VAACs) and civil aviation management, depends on adapting volcanic ash transport and dispersion models to include specific ash emission schemes. Few studies have attempted to model the mechanisms of emission and transport of windblown volcanic ash, and a systematic study of observed cases has not been carried out yet. This manuscript combines numerical simulations along with a variety of observational data to examine the general features of ash resuspension events in northern Patagonia following the 2011 Cordón Caulle eruption (Chile). The associated outcomes provide new insights into the spatial distribution of sources, frequency of events, transport patterns, seasonal and diurnal variability, and spatio-temporal distribution of airborne ash. A novel modelling approach based on the coupling between Advanced Research core of the Weather Research and Forecasting (WRF-ARW) and FALL3D models is presented, with various model improvements that allow overcoming some limitations in previous ash resuspension studies. Outcomes show the importance of integrating source information based on field measurements (e.g., deposit grain size distribution and particle density). We provide evidence of a strong diurnal and seasonal variability associated with the ash resuspension activity in Patagonia. According to the modelled emission fluxes, ash resuspension activity was found to be significantly more intense during daytime hours. Satellite observations and numerical simulations strongly suggest that major emission sources of resuspended ash were distributed across distal areas (>100 km from the vent) of the Patagonian steppe, covered by a thin layer of fine ash. The importance of realistic soil moisture data to properly model the spatial distribution of emission sources is also highlighted.Leonardo Mingari thanks CONICET for their PhD fellowship. Lucia Dominguez was supported by the Swiss National Science Foundation (project number 200021-63152). The WRF-ARW/FALL3D modelling system has been run on the Marenostrum Supercomputer located in the Barcelona Supercomputer Center (BSC) and an HPC system installed at the National Weather Service (Argentina) with funds from the Argentinian project PIDDEF 41/10. This work has been partially funded by the H2020 Center of Excellence for Exascale in Solid Earth (ChEESE) under the Grant Agreement No. 823844.Peer ReviewedPostprint (published version

    Investigating the nature of an ash cloud event in Southern Chile using remote sensing: volcanic eruption or resuspension?

    No full text
    On 14 December 2013, the Cooperative Institute for Meteorological Satellite Studies (United States) reported a volcanic ash cloud apparently emitted by the Puyehue Cordón Caulle Volcanic Complex (Chile) and indicated its cause was probably resuspension. The distinction of volcanic ash resuspension from volcanic eruptions is important because both processes pose different scenarios for civil protection authorities and besides, there is a special need of specific schemes for detecting and monitoring resuspension of volcanic ash. To this end, we intended to identify the cause of this event by using remote sensing technology. Remote sensing based volcanic ash products enabled us to confirm the presence of volcanic ash and observations on the Moderate Resolution Imaging Spectroradiometer (MODIS)–based cloud-integrated water path provided evidence in favour of a small and short-lived eruption. Thus, a volcanic eruption would constitute a plausible explanation for the cloud of 14 December 2013, but we were unable to discard resuspension. On the other hand, we found out that the water path product could constitute useful ancillary data to identify the origin of this kind of processes. The set of observations presented constitutes a good initial point towards the identification and subsequent development of decision support tools for the mitigation of the hazards posed by volcanic ash resulting from volcanic eruptions and resuspension.Fil: Toyos, Guillermo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales; ArgentinaFil: Mingari, Leonardo Alejandro. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pujol, Gloria. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Comision Nacional de Actividades Espaciales; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin
    corecore