886 research outputs found
Emerging Roles for Immunomodulatory Functions of Free ISG15
Type I interferons (IFNs) exert their effects through the induction of hundreds of IFN-stimulated genes (ISGs), many of which function by inhibiting viral replication and modulating immune responses. ISG15, a di-ubiquitin-like protein, is one of the most abundantly induced ISGs and is critical for control of certain viral and bacterial infections. Like ubiquitin, ISG15 is covalently conjugated to target proteins. In addition, free unconjugated ISG15 is present both intra- and extracellularly. Although much remains to be learned about conjugated ISG15, even less is known about the 2 free forms of ISG15. This article focuses on the role that ISG15 plays during the host response to pathogen challenge, in particular on the recent observations describing the immunomodulatory properties of free ISG15 and its potential implication in disease pathogenesis
Human cytomegalovirus pUL79 Is an elongation factor of RNA polymerase II for viral gene transcription
In this study, we have identified a unique mechanism in which human cytomegalovirus (HCMV) protein pUL79 acts as an elongation factor to direct cellular RNA polymerase II for viral transcription during late times of infection. We and others previously reported that pUL79 and its homologues are required for viral transcript accumulation after viral DNA synthesis. We hypothesized that pUL79 represented a unique mechanism to regulate viral transcription at late times during HCMV infection. To test this hypothesis, we analyzed the proteome associated with pUL79 during virus infection by mass spectrometry. We identified both cellular transcriptional factors, including multiple RNA polymerase II (RNAP II) subunits, and novel viral transactivators, including pUL87 and pUL95, as protein binding partners of pUL79. Co-immunoprecipitation (co-IP) followed by immunoblot analysis confirmed the pUL79-RNAP II interaction, and this interaction was independent of any other viral proteins. Using a recombinant HCMV virus where pUL79 protein is conditionally regulated by a protein destabilization domain ddFKBP, we showed that this interaction did not alter the total levels of RNAP II or its recruitment to viral late promoters. Furthermore, pUL79 did not alter the phosphorylation profiles of the RNAP II C-terminal domain, which was critical for transcriptional regulation. Rather, a nuclear run-on assay indicated that, in the absence of pUL79, RNAP II failed to elongate and stalled on the viral DNA. pUL79-dependent RNAP II elongation was required for transcription from all three kinetic classes of viral genes (i.e. immediate-early, early, and late) at late times during virus infection. In contrast, host gene transcription during HCMV infection was independent of pUL79. In summary, we have identified a novel viral mechanism by which pUL79, and potentially other viral factors, regulates the rate of RNAP II transcription machinery on viral transcription during late stages of HCMV infection
Migration as Adaptation? Exploring The Scope for Co-ordinating Environmental and Migration Policies in the European Union
Lagrangian turbulence in the Adriatic Sea as computed from drifter data: effects of inhomogeneity and nonstationarity
The properties of mesoscale Lagrangian turbulence in the Adriatic Sea are
studied from a drifter data set spanning 1990-1999, focusing on the role of
inhomogeneity and nonstationarity. A preliminary study is performed on the
dependence of the turbulent velocity statistics on bin averaging, and a
preferential bin scale of 0.25 is chosen. Comparison with independent estimates
obtained using an optimized spline technique confirms this choice. Three main
regions are identified where the velocity statistics are approximately
homogeneous: the two boundary currents, West (East) Adriatic Current, WAC
(EAC), and the southern central gyre, CG. The CG region is found to be
characterized by symmetric probability density function of velocity,
approximately exponential autocorrelations and well defined integral quantities
such as di usivity and time scale. The boundary regions, instead, are
significantly asymmetric with skewness indicating preferential events in the
direction of the mean flow. The autocorrelation in the along mean flow
direction is characterized by two time scales, with a secondary exponential
with slow decay time of 11-12 days particularly evident in the EAC region.
Seasonal partitioning of the data shows that this secondary scale is especially
prominent in the summer-fall season. Possible physical explanations for the
secondary scale are discussed in terms of low frequency fluctuations of
forcings and in terms of mean flow curvature inducing fluctuations in the
particle trajectories. Consequences of the results for transport modelling in
the Adriatic Sea are discussed.Comment: 45 pages, 18 figure
Recommended from our members
An overview of ISCAT 2000
The Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) took place over the timer period of 15 November to 31 December in the year 2000. The study location was the Amundsen Scott Station in Antarctica. ISCAT 2000 defines the second phase of a program designed to explore tropospheric chemistry in Antarctica. As in 1998, the 2000 ISCAT study revealed a strong oxidizing environment at South Pole (SP). During the 2000 investigation, however, the suite of measurements was greatly expanded. These new measurements established the recycling of reactive nitrogen as a critical component of this unique environment. This paper first presents the historical background leading up to the ISCAT 2000 observations; then it focuses on providing a summary of the year 2000 results and contrasts these with those recorded during 1998. Important developments made during the 2000 study included the recording of SP data for several species being emitted from the snowpack. These included NO, H 2O2 and CH2O. In this context, eddy-diffusion flux measurements provided the first quantitative estimates of the SP NO and NOx snow-to-atmosphere fluxes. This study also revealed that HNO 3 and HO2NO2 were major sink species for HOx and NOx radicals. And, it identified the critical factors responsible for SP NO levels exceeding those at other polar sites by nearly an order of magnitude. Finally, it reports on the levels of gas phase sulfur species and provides evidence indicating that the absence of DMS at SP is most likely due to its greatly shorten chemical lifetime in the near vicinity of the plateau. It is proposed that this is due to the influence of NO on the distribution of OH in the lower free troposphere over a region that extends well beyond the plateau itself. Details related to each of the above findings plus others can be found in the 11 accompanying Special Issue papers. © 2004 Elsevier Ltd. All rights reserved
Hysteresis phenomenon in turbulent convection
Coherent large-scale circulations of turbulent thermal convection in air have
been studied experimentally in a rectangular box heated from below and cooled
from above using Particle Image Velocimetry. The hysteresis phenomenon in
turbulent convection was found by varying the temperature difference between
the bottom and the top walls of the chamber (the Rayleigh number was changed
within the range of ). The hysteresis loop comprises the one-cell
and two-cells flow patterns while the aspect ratio is kept constant (). We found that the change of the sign of the degree of the anisotropy of
turbulence was accompanied by the change of the flow pattern. The developed
theory of coherent structures in turbulent convection (Elperin et al. 2002;
2005) is in agreement with the experimental observations. The observed coherent
structures are superimposed on a small-scale turbulent convection. The
redistribution of the turbulent heat flux plays a crucial role in the formation
of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres
Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen
Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines
HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells
Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation. Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6-/-mice may provide a feasible model to study the role of human HerC5 in antiviral responses
Sustained improvements in MRI outcomes with abatacept following the withdrawal of all treatments in patients with early, progressive rheumatoid arthritis
Objectives: To assess structural damage progression with subcutaneous abatacept (ABA) in the Assessing Very Early Rheumatoid arthritis Treatment (AVERT) trial following abrupt withdrawal of all rheumatoid arthritis (RA) medication in patients achieving Disease Activity Score (DAS)-defined remission or low disease activity. Methods: Patients with early, active RA were randomised to ABA plus methotrexate (ABA/MTX) 125 mg/week, ABA 125 mg/week or MTX for 12 months. All RA treatments were withdrawn after 12 months in patients with DAS28 (C reactive protein (CRP)) <3.2. Adjusted mean changes from baseline in MRI-based synovitis, osteitis and erosion were calculated for the intention-to-treat population. Results: 351 patients were randomised and treated: ABA/MTX (n=119), ABA (n=116) or MTX (n=116). Synovitis and osteitis improved, and progression of erosion was statistically less with ABA/MTX versus MTX at month 12 (−2.35 vs −0.68, −2.58 vs −0.68, 0.19 vs 1.53, respectively; p<0.01 for each) and month 18 (−1.34 vs −0.49 −2.03 vs 0.34, 0.13 vs 2.0, respectively; p<0.01 for erosion); ABA benefits were numerically intermediate to those for ABA/MTX and MTX. Conclusions: Structural benefits with ABA/MTX or ABA may be maintained 6 months after withdrawal of all treatments in patients who have achieved remission or low disease activity
CD160-Associated CD8 T-Cell Functional Impairment Is Independent of PD-1 Expression.
Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression
- …
