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Human Cytomegalovirus pUL79 Is an Elongation Factor
of RNA Polymerase II for Viral Gene Transcription
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1 Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America, 2 Department of Medicine,

Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America

Abstract

In this study, we have identified a unique mechanism in which human cytomegalovirus (HCMV) protein pUL79 acts as an
elongation factor to direct cellular RNA polymerase II for viral transcription during late times of infection. We and others
previously reported that pUL79 and its homologues are required for viral transcript accumulation after viral DNA synthesis.
We hypothesized that pUL79 represented a unique mechanism to regulate viral transcription at late times during HCMV
infection. To test this hypothesis, we analyzed the proteome associated with pUL79 during virus infection by mass
spectrometry. We identified both cellular transcriptional factors, including multiple RNA polymerase II (RNAP II) subunits,
and novel viral transactivators, including pUL87 and pUL95, as protein binding partners of pUL79. Co-immunoprecipitation
(co-IP) followed by immunoblot analysis confirmed the pUL79-RNAP II interaction, and this interaction was independent of
any other viral proteins. Using a recombinant HCMV virus where pUL79 protein is conditionally regulated by a protein
destabilization domain ddFKBP, we showed that this interaction did not alter the total levels of RNAP II or its recruitment to
viral late promoters. Furthermore, pUL79 did not alter the phosphorylation profiles of the RNAP II C-terminal domain, which
was critical for transcriptional regulation. Rather, a nuclear run-on assay indicated that, in the absence of pUL79, RNAP II
failed to elongate and stalled on the viral DNA. pUL79-dependent RNAP II elongation was required for transcription from all
three kinetic classes of viral genes (i.e. immediate-early, early, and late) at late times during virus infection. In contrast, host
gene transcription during HCMV infection was independent of pUL79. In summary, we have identified a novel viral
mechanism by which pUL79, and potentially other viral factors, regulates the rate of RNAP II transcription machinery on viral
transcription during late stages of HCMV infection.
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Introduction

HCMV is a prototypical beta-herpesvirus and a ubiquitous

pathogen in the human population. Upon primary infection,

HCMV establishes a lifelong persistent and latent/recurrent

infection in a host [1]. Even though HCMV infection is usually

asymptomatic, it acts as an opportunistic pathogen and is a major

cause of morbidity and mortality in immunocompromised

individuals, including transplant recipients and AIDS/HIV

patients [2]. Importantly, HCMV is the leading infectious cause

of birth defects in newborns [3]. Furthermore, there is evidence for

HCMV to act as a risk factor in the development of vascular

diseases, such as atherosclerosis, transplant vascular sclerosis, and

coronary restenosis after angioplasty surgery [4–10]. Finally,

HCMV has also been suggested to be relevant to multiple forms

of human cancers, where it may have a potential contribution to

oncogenic transformation, onco-modulation, and tumor cell

immune evasion [11–14].

During lytic infection, HCMV genes are expressed in a highly

ordered temporal cascade (reviewed in [15–18]). Viral transcripts

accumulate with three kinetic classes, namely immediate-early,

early, and late. The HCMV major IE (MIE) genes UL123 (IE1)

and UL122 (IE2) play critical roles in predisposing the cellular

environment to infection and also act as transactivators to induce

early gene transcription. Many early genes encode proteins

required for viral DNA synthesis [19–21]. The transcript

accumulation of early genes is independent of viral DNA synthesis;

however, the continued accumulation of a subset of genes (i.e.,

early-late) is enhanced by the onset of viral DNA synthesis [22].

Following viral DNA replication, late viral genes, which mainly

encode structural proteins, start to transcribe and ultimately lead

to the assembly and release of infectious particles. Previous studies

have shown that the activation of both beta- and gamma-

herpesvirus late gene promoters is dependent on the origin of viral

DNA synthesis (OriLyt) in cis [23–25]. This further supports the

notion that late gene transcription is tightly coupled to viral DNA

synthesis. However, whether viral late gene expression is subjected

to additional viral regulation remains poorly defined.

In many DNA viruses, viral gene expression during productive

infection is also temporally regulated and can be divided into early

and late phases separated by viral genome replication. However,

the mechanisms of late gene expression are diverse. Simian virus
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40 (SV40) requires viral DNA replication in trans to relieve the

repression of viral late promoters [26,27], and the viral large T

antigen also plays a critical role to activate the late promoters

[28,29]. Viral late gene expression during papillomavirus

infection is tightly associated with keratinocyte differentiation

and mediated in part by alternative mRNA splicing [30]. For

adenoviruses, activation of late gene expression requires both cis
elements of viral DNA replication [31,32] and trans acting

factors to titrate an inhibitory factor during viral DNA synthesis

[33]. For herpesviruses, viral late gene expression has been

studied extensively with herpes simplex virus (HSV). In HSV,

viral DNA replication is required in cis for activity of late

promoters [34,35]. HSV proteins, including ICP4, ICP8, and

ICP27, facilitate the assembly of transcription preinitiation

complexes [36,37], and are required for efficient expression of

late genes by interacting with the general transcription

machinery [38–40]. However, the regulatory activities of these

viral proteins in late gene expression are not well conserved in

beta- and gamma-herpesviruses.

Recently, we and others have demonstrated that HCMV

encodes five essential proteins, UL79, UL87, UL91, UL92, and

UL95, which are required for the expression of viral late genes

after viral DNA synthesis [41–43]. Murine cytomegalovirus

(MCMV) M79 and M92, homologs of HCMV UL79 and

UL92, respectively, are also required for late gene expression

[44,45]. Homologs of UL79, UL87, UL91, UL92, and UL95 are

found in murine gammaherpesvirus 68 (MHV-68) (ORF18,

ORF24, ORF30, ORF31, and ORF34, respectively), which have

been shown to have similar functions [46–49]. Epstein-Barr virus

(EBV) BcRF1, a UL87 homolog, is a novel viral TATA-box

binding protein with greater specificity for a non-classical TATA-

box sequence [50,51]. Intriguingly, these factors are conserved

only in beta- and gamma-herpesviruses and have no known

homologues in herpes simplex virus (HSV) [18,41], suggesting a

unique viral regulatory mechanism shared by these two herpesviral

subfamilies. However, the underlying mechanisms of how these

viral factors regulate late gene expression are incompletely

understood.

During cytomegalovirus infection, viral genes are transcribed by

cellular RNA polymerase II (RNAP II). Its largest subunit Rpb1

has a carboxy terminal domain (CTD) containing 52 repeats of a

heptapeptide (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) [52]. The

CTD acts as a scaffold to interact with other transcription factors

and coordinate transcription with other processes, such as mRNA

maturation and chromatin modification [53,54]. This activity is

tightly regulated by the phosphorylation status of the CTD

[55,56]. Unphosphorylated RNAP II is recruited to preinitiation

complexes (PIC) [57]. Once bound to a promoter, CTD Ser5 is

phosphorylated by cdk7 to release RNAP II from the PIC [58] and

also promote the recruitment of capping/splicing factors and

histone modification complexes [53]. RNAP II then proceeds to

intrinsic pausing sites where it is halted by negative elongation

factors (NELFs). The onset of productive elongation requires the

positive transcription elongation factor P-TEFb composed of cdk9

and cyclin T, which phosphorylates CTD Ser2 [59]. At the 39 end

of the coding region, phosphatases Ssu72 and Fcp1 dephosphor-

ylate the CTD. RNAP II dissociates from the DNA template and

is recycled as an unphosphorylated, initiation-competent form for

another round of transcription [60,61].

HCMV utilizes RNAP II and the accompanying host machin-

ery for transcription of viral genes. During early times of viral

infection, RNAP II and other transcription machinery are

recruited to early replication sites to drive viral IE and early gene

expression [62]. The protein levels of RNAP II, including hyper-

phosphorylated forms, increase as infection progresses [62,63].

Treatment of infected cells with cdk inhibitors inhibits viral gene

expression as well as viral replication [64]. During late stages of

viral infection, cdk kinase and RNAP II-associated transcriptional

machinery proteins continue to accumulate and relocate into the

peri-replication center [65]. However, how RNAP II transcription

machinery remains active on viral loci during late infection

requires further investigation.

In this study, we dissected the mechanism of HCMV late gene

expression by investigating the proteins that are associated with

late transcription regulator pUL79 during HCMV infection. We

found that pUL79 interacted with a panel of viral and host

proteins, including RNAP II, other novel late transcription

regulators pUL87 and pUL95, as well as components of the viral

DNA replication complex. We delineated the pUL79-RNAP II

interaction and found that pUL79 bound to RNAP II in the

nucleus independent of additional viral factors. Mechanistically,

pUL79 did not alter RNAP II protein levels or the phosphory-

lation profile of its CTD. Instead, in the absence of pUL79, RNAP

II stalled on viral DNA loci, including those of viral immediate-

early, early, and late genes, but not those of host genes, during late

times of infection. This resulted in a significantly diminished

elongation rate of RNAP II-driven transcription on viral loci. We

conclude that during late times of infection HCMV induces the

formation of unique transcriptional machinery in which pUL79

acts as an elongation factor to specifically drive RNAP II-mediated

transcription on the viral genome.

Results

Identification of pUL79-interacting proteins
To investigate proteins associated with pUL79, we first

generated a recombinant HCMV in which the UL79 coding

sequence was tagged with the 36FLAG sequence (ADflagUL79)

so that protein complexes containing pUL79 in infected cell lysate

could be isolated by immunoprecipitation (IP) with an anti-FLAG

antibody (Fig. 1A). Both growth and protein expression profile

(Figs. 1B–1C) of ADflagUL79 was indistinguishable from those of

Author Summary

In this study, we report a novel mechanism used by human
cytomegalovirus (HCMV) to regulate the elongation rate of
RNA polymerase II (RNAP II) to facilitate viral transcription
during late stages of infection. Recently, we and others
have identified several viral factors that regulate gene
expression during late infection. These factors are func-
tionally conserved among beta- and gamma- herpesvirus-
es, suggesting a unique transcriptional regulation shared
by viruses of these two subfamilies. However, the
mechanism remains elusive. Here we show that HCMV
pUL79, one of these factors, interacts with RNAP II as well
as other viral factors involved in late gene expression. We
have started to elucidate the nature of the pUL79-RNAP II
interaction, finding that pUL79 does not alter the protein
levels of RNAP II or its recruitment to viral promoters.
However, during late times of infection, pUL79 helps RNAP
II efficiently elongate along the viral DNA template to
transcribe HCMV genes. Host genes are not regulated by
this pUL79-mediated mechanism. Therefore, our study
discovers a previously uncharacterized mechanism where
RNAP II activity is modulated by viral factor pUL79, and
potentially other viral factors as well, for coordinated viral
transcription.
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wildtype AD169 strain (ADwt) in human foreskin fibroblasts cells

(HFFs). These results indicate that the addition of 36FLAG tag to

the N-terminus of the UL79 coding sequence does not compro-

mise the function of pUL79.

To identify proteins that interacted with FLAG-pUL79, lysates

from HFF cells infected with virus ADflagUL79 or ADwt
(negative control) were collected at 72 hours post infection (hpi)

and immunoprecipitated with the anti-FLAG antibody. Immuno-

precipitated proteins were resolved by SDS-PAGE and visualized

by silver staining (Fig. 1D). Protein bands unique to ADflagUL79

were extracted and their identities were determined by mass

spectrometry. For the negative control, we also extracted gel bands

from the ADwt sample with migrating positions corresponding to

those of ADflagUL79-specific protein bands as negative controls

for mass-spectrometry analysis. The full set of proteins that were

identified by this approach and unique to ADflagUL79 is listed in

Table 1.

These pUL79-interacting proteins could be categorized into

several functional groups. Most notably, four out of twelve core

subunits of human RNA polymerase II (RNAP II), namely Rpb1,

Rpb2, Rpb3, and Rpb5, were identified (Table 1). Rpb1 is the

largest subunit of RNAP II and its C-terminal domain (CTD) plays

a critical role in transcription regulation by interacting with

various transcriptional factors. Second, several viral proteins that

are conserved among beta- and gamma- herpesviruses, including

pUL87, pUL95, pUL49, and pUL92, were found in the pUL79-

protein complexes. pUL87 and pUL95 (shown in Table 1),

together with pUL79, are required for viral late gene expression

and are reported to be recruited to the viral pre-replication

complexes [42,43]. pUL92, another HCMV protein required for

viral late gene expression, was also identified in this mass

spectrometry analysis as a pUL79-interacting protein and has

been reported as such in a separate study [44]. These data

together suggest that pUL79 interacts with other viral regulatory

proteins involved in late gene expression during HCMV infection.

Third, proteins involved in viral DNA synthesis or shown to be

associated with viral lytic origin of replication (OriLyt) [66],

including pUL44, pIRS1, and pUL112/113, were also found in

pUL79 protein complexes. Copurification of pUL79 and viral

DNA replication factors suggests that pUL79 may have a role in

coordinating viral DNA synthesis and late gene expression.

Finally, several cellular proteins involved in protein translation,

such as ribosomal protein subunits and elongation factor 1-alpha1,

were co-purified with pUL79.

In this study, we focused on the interaction between pUL79 and

RNAP II subunits. As RNAP II transcribes viral genes during

infection, we hypothesized that pUL79 interacts with RNAP II to

modify and promote its activity for viral transcription during late

stages of infection.

pUL79 interacts with the RNAP II complex
To further investigate the association of the RNAP II complex

with pUL79, we first validated this interaction by immunoprecip-

itation analysis. HFFs were infected with either ADflagUL79 or

ADwt (negative control), cell lysates were collected at 72 hpi, and

proteins were immunoprecipitated by using antibodies against

RNAP II or FLAG, followed by immunoblot analysis (Fig. 2). For

the cells infected with ADflagUL79, two RNAP II subunits, Rpb1

and Rpb2, were co-immunoprecipitated with FLAG-pUL79 but

were not co-immunoprecipitated from ADwt-infected samples

(Fig. 2A). In a reciprocal experiment, an anti-Rpb1 antibody co-

immunoprecipitated not only the RNAP II complex (indicated by

Rpb1 and Rpb2) in both ADflagUL79- and ADwt- infected

samples, but also FLAG-pUL79 in ADflagUL79-infected samples

(Fig. 2B). Taken together, these results indicate that pUL79 is

associated with the RNAP II complex during viral infection.

The RNAP II complex binds to both DNA and RNA

fragments. It is possible that the observed interaction of pUL79

with RNAP II is indirect, and is instead the result of the association

of both proteins with the same DNA or RNA fragment. To

determine if nucleic acids are required for the pUL79-RNAP II

interaction, cell lysates were treated with a nonspecific nuclease

(Benzonase) prior to immunoprecipitation [67]. Benzonase treat-

ment was effective, reducing RNA/DNA to undetectable levels in

ethidium bromide-stained agarose gel electrophoresis analysis

(Fig. 2A and Fig. 2B). In the presence of nuclease, pUL79, Rpb1,

and Rpb2 remained co-immunoprecipitated in ADflagUL79-

infected lysates (Fig. 2A and 2B). Taken together, these results

indicate that pUL79 and RNAP II associate with one another, and

that this association is not mediated by nucleic acids.

We then sought to determine whether the pUL79-RNAP II

interaction could form independent of additional viral factors. To

achieve this, we transfected HEK-293T cells with a plasmid

expressing HA-tagged pUL79 or an empty vector plasmid. pUL79

contains a PY-nuclear localization signal directing it into the

nucleus [68] and is located in viral replication compartments

during infection [42,43]. Therefore, we extracted nuclear lysates of

transfected cells, and performed co-immunoprecipitation analysis

to examine the pUL79-RNAP II interaction using either an anti-

HA antibody or anti-Rpb1 antibody in the presence of nuclease.

As anticipated, HA-pUL79 was present in the nuclear extracts

(Fig. 2C and 2D). Anti-HA antibody immunoprecipitated HA-

pUL79 together with Rpb1, particularly the Rpb1 CTD

phosphorylated at Serine 2 (pSer2-CTD) (Fig. 2C). As pSer2-

CTD is a marker of RNAP II undergoing transcriptional

elongation, this result suggests that pUL79 may interact with

RNAP II during the transcription cycle to modulate its elongation.

Reciprocal co-immunoprecipitation using an anti-Rpb1 antibody

further confirmed the association of RNAP II with pUL79

(Fig. 2D). Together, these results indicate that pUL79 can interact

with RNAP II independent of other viral factors. The presence of

pSer2-CTD in the pUL79-RNAP II complex also suggests that

pUL79 may regulate the elongation activity of RNAP II.

pUL79 does not alter protein accumulations of RNAP II
A previous study found that HCMV promotes the accumulation

of RNAP II at late times during infection [63]. Various isoforms of

phosphorylated RNAP II, including pSer2-CTD and pSer5-CTD

(i.e. CTD phosphorylated at Serine 5, a hallmark of successful

transcription initiation) also accumulate at these late times

[62,63,69]. However, the mechanism of how HCMV regulates

these RNAP II-mediated transcriptional events is not clear.

To determine whether the pUL79-RNAP II association can

stabilize the RNAP II complex to increase its protein levels, we

measured RNAP II protein accumulation during HCMV infection

in the presence or absence of pUL79 protein. We have previously

constructed a recombinant HCMV virus ADddUL79 in which the

UL79 coding sequence was tagged with the highly unstable

ddFKBP domain [42]. This allowed us to abrogate pUL79

function by targeting it for rapid degradation, or maintain its

function by stabilizing the protein with the synthetic ligand Shield-

1 (Shld1) [42]. Here, we infected HFF cells with ADddUL79 in the

presence or absence of Shld1, and analyzed infected cell lysates by

immunoblotting at various times post infection. As anticipated, in

the presence of Shld1, ddFKBP-pUL79 was detected at 72 hpi

from total cell lysates (Fig. 3) or nuclear extracts (Fig. S1) using the

antibody recognizing the ddFKBP epitope. In the absence of

Shld1, ddFKBP-pUL79 was markedly reduced and barely visible

CMV pUL79 Is a Viral Elongation Factor of RNAP II
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Figure 1. Identification of pUL79 interacting proteins. (A) Schematic diagram for creating pADflagUL79, the recombinant HCMV BAC clone
used to produce virus ADflagUL79. A cassette that contained a 36FLAG tag followed by the FRT-bracketed GalK/kanamycin dual selection marker
was amplified by PCR and recombined into the wildtype HCMV BAC clone (pADwt) at the 59 terminus of the UL79 coding sequence. The selection
marker was then removed by Flp/FRT recombination. The final clone, pADflagUL79, carried the UL79 coding sequence tagged at its 59 terminus with
36FLAG. (B) Single step viral growth analysis. HFF cells were infected with HCMV recombinant virus ADflagUL79 (derived from pADflagUL79) or ADwt
(derived from pADwt) at an MOI of 3. Infected culture supernatants were collected at indicated days post infection and virus titers were determined
by TCID50 assay. The mean virus titers were derived from two independent experiments and two technical replicates. Standard deviations are
presented. The detection limit is indicated by the dashed line. (C) Viral protein expression profile. HFFs were infected as described in (B), and
harvested at indicated times post infection. Accumulations of host and viral proteins were determined by immunoblot analysis. FLAG-tagged pUL79
was detected by an anti-FLAG antibody. Actin was used as a loading control. Representative results from three independent experiments are shown.
(D) Polyacrylamide gel electrophoresis to resolve pUL79 protein complexes. HFFs were infected as described in (B), and at 72 hpi, cell lysates were
prepared for immunoprecipitation using an anti-FLAG antibody. Immunoprecipitated proteins were resolved on a gradient polyacrylamide gel and
silver stained. Protein bands containing RNAP II subunits identified by mass spectrometry are indicated. Molecular size markers (in kilodaltons) are
shown.
doi:10.1371/journal.ppat.1004350.g001
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only after prolonged exposure by immunoblot analysis. To

confirm this regulation of pUL79 activity, we also examined

expression profiles of representative viral immediate-early (IE1),

early (pUL44), and late (pp71) proteins. In the presence of pUL79,

all three classes of viral proteins were accumulated with the

expected kinetics (Fig. 3). In the absence of pUL79, immediate-

early and early proteins accumulated normally but the accumu-

lation of the late protein was dramatically reduced (Fig. 3). These

results were consistent with the previous study [42], and validated

the effectiveness of Shld1-mediated regulation of pUL79 activity in

this study. Importantly, the protein levels of Rbp2 and Rpb1 (both

total Rpb1 and various CTD-phosphor isoforms) increased as

expected when infection progressed [62,63], but the accumula-

tions were independent of the presence or absence of pUL79

(Fig. 3). Together, these results indicate that total RNAP II as well

as its CTD modified forms accumulate during viral infection in a

pUL79-independent manner.

pUL79 alters RNAP II occupancy at viral loci
A previous study showed that MHV-68 ORF30 and ORF34,

homologues of HCMV UL91 and UL95, respectively, are

required for the recruitment of RNAP II to the viral late

Table 1. pUL79 protein partners identified by mass spectrometry.

Protein ID Description Size (kDa) Expectationa Peptide count

HCMV transactivators

B8YEB2 pUL87 104.7 0 44

B8YEB9 pUL95 57.2 9.4610E-37 26

A8T7F6 pUL79 33.8 1.5610E-40 12

HCMV DNA synthesis

Q69214 UL112/113 (pp34) 28.3 2.7610E-14 7

D2K4M1 UL112 (pp84) 70.2 3.2610E-15 6

D2K5E9 pUL44 (DNA pol. processivity factor) 46.2 8.0610E-6 2

C8CFZ3 IRS1 (tegument protein) 91.7 9.6610E-3 1

Other HCMV proteins

D2K3R0 pUL104 (capsid portal protein) 78.4 2.5610E-35 10

D2K4X8 pUL85 (capsid triplex subunit) 34.5 2.8610E-16 7

D2K4H6 pUL150 (nuclear egress protein) 43.1 1.1610E-05 2

Q1KQ04 pUL49 63.8 0.01 1

Cellular RNA polymerase II

RPB2_Human Subunit Rpb2 133.8 8.8610E-101 29

RPB1_Human Subunit Rpb1 217 2.6610E-81 27

RPB3_Human Subunit Rpb3 31.4 1.1610E-20 6

RPB5_Human Subunit Rpb5 24.5 6.8610E-07 2

Ribosome biogenesis

RL7A_Human 60S ribosomal protein L7a 29.9 4.6610E-07 3

RL21_Human 60S ribosomal protein L21a 18.5 2.1610E-11 3

RS2_Human 40S ribosomal protein RPS2 31.3 6.7610E-05 3

RS3A_Human 40S ribosomal protein RPS3a 29.9 4.4610E-04 3

RL23_Human 60S ribosomal protein RPL23 14.8 3.9610E-04 2

RL23A_Human 60S ribosomal protein RPL23a 17.6 3.6610E-04 1

RL24_Human 60S ribosomal protein L24 17.7 8.8610E-01 1

RS26L_Human 40S ribosomal protein S26-like 1 12.9 9.8610E-03 1

RS27A_Human Ubiquitin-40S ribosomal protein S27a 17.9 0.23 1

Other cellular proteins

ACTB_Human Actin, cytoplasmic 1 41.9 4.6610E-51 15

ACTN1_Human Alpha-actinin-1 102.9 8.4610E-10 3

EF1A1_Human Elongation factor 1-alpha 1 50.1 4.8610E-3 3

ANXA5_Human Annexin A5 35.9 9.7610E-3 3

H2A1B_Human Histone H2A type 1-B/E 14.12 0.15 3

RECQ4_Human ATP-dependent DNA helicase Q4 132.9 0.25 1

aExpectation value for peptide match (i.e. the number of times expected to obtain an equal or higher score, purely by chance). A lower value indicates a higher
likelihood of the interaction.
doi:10.1371/journal.ppat.1004350.t001
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promoters [48]. Like ORF30 and ORF34, both UL91 and UL95

were reported to be essential for late gene expression [41,43]. In

this study, we identified pUL95 as a protein partner of pUL79

(Table 1). Therefore, we hypothesized that pUL79 forms a

complex with pUL95 and other binding partners to recruit RNAP

II and promote assembly of the transcription initiation complex at

viral late promoters.

To test this, we determined the occupancy of RNAP II on viral

late promoters with or without pUL79 during infection using a

chromatin immunoprecipitation (ChIP) assay. HFFs were infected

with ADddUL79 in the presence or absence of Shld1 and

chromatin fractions from infected cells were collected at 72 hpi

and analyzed by ChIP assay using a rabbit anti-RNAP II

antibody. The amounts of input and output (immunoprecipitated)

DNA were measured by quantitative real-time PCR (qPCR)

analysis using primers specific to the promoter or transcript

regions of viral genes or the cellular housekeeping gene GAPDH

(Table S2). The localizations of qPCR primers and sizes of qPCR

products are diagramed in Fig. 4A. The qPCR results were

presented as relative output-to-input ratios to account for the

percentages of host/viral genomes occupied by RNAP II during

viral infection (Fig. 4B). The levels of viral and cellular DNA

immunoprecipitated by Rbp1 antibody were readily detectable

whereas DNA immunoprecipitated by control IgG was minimal,

indicating the specific binding of Rbp1 to the DNA sequences

detected in this assay. However, to our surprise, the occupancy

of Rpb1 at the promoter or transcript regions of viral genes was

not reduced in the absence of pUL79, suggesting that pUL79 is

not required for RNAP II recruitment to viral promoters

(Fig. 4B). Instead, without pUL79, Rpb1 levels on viral DNA

were ,2–2.5 fold higher than those with pUL79. Importantly,

during late times of infection (72 hpi), elevated Rpb1 accumu-

lation occurred not only on the loci of viral late genes (UL32

and UL75), it also occurred on those of viral immediate-early

genes (MIE) and early genes (UL54) (Fig. 4B). Moreover, this

increased association of RNAP II with viral DNA occurred at

both promoter regions and transcript regions. By comparison,

Rpb1 occupancy on the host gene GAPDH was not altered by

pUL79.

If pUL79 modulates RNAP II occupancy on viral loci, we

would then expect that pUL79 is associated with RNAP II on viral

loci. To test this hypothesis, we determined the occupancy of

pUL79 on either viral or host loci during infection. HFFs were

infected with ADflagUL79 or ADwt viruses and chromatin

fractions from infected cells were collected at 72 hpi and analyzed

by ChIP assay using either an anti-FLAG antibody, which

recognizes the 36 FLAG-tagged UL79 protein, or a control IgG

antibody. The amounts of input and output (immunoprecipitated)

DNA were measured by qPCR analysis using primers identical to

those in Fig. 4B. Viral DNA immunoprecipitated by the FLAG

antibody from ADflagUL79 samples was readily detectable

whereas DNA immunoprecipitated by control IgG was minimal,

indicating the specific binding of the FLAG tagged pUL79 to the

DNA sequences detected in this assay (Figs. 4C and S3).

Although certain amounts of background DNA were also

immunoprecipitated by the FLAG antibody from ADwt
samples, the amounts of viral DNA immunoprecipitated from

ADflagUL79 samples were generally higher, as determined by

ChIP-qPCR. This supports the hypothesis that pUL79 occupies

viral loci at late times of viral infection. Finally, amounts of

cellular DNA (i.e. GAPDH) immunoprecipitated from both

ADflagUL79 and ADwt samples were minimal and indistin-

guishable, suggesting that pUL79 is not associated with the host

genome during viral infection (Fig. 4C).

Taken together, these results indicate that pUL79 regulates the

occupancy of RNAP II on viral loci, but not its recruitment to viral

promoters, during late times of viral infection.

pUL79 does not alter a particular phosphorylated form of
the RNAP II CTD

Next, we wanted to determine how the observed dysregulated

elevation in the occupancy of RNAP II on viral DNA when

pUL79 was abrogated contributed to its diminished ability to

transcribe viral genes. Specifically, we wanted to determine which

stage of the RNAP II transcription cycle (i.e. initiation, elongation,

or termination) was altered by pUL79 by performing ChIP

analysis using antibodies that recognize various forms of RNAP II

CTD modifications. In a transcription cycle, Ser5 of RNAP II

CTD is rapidly phosphorylated (pSer5-CTD) to facilitate the

dissociation of RNAP II from the promoter and recruitment of

RNA capping and splicing factors. After that, pSer5 CTD levels

decrease with a concomitant increase in Ser2 phosphorylation

(pSer2-CTD) to facilitate efficient transcription elongation. At

72 hpi, we found that both pSer5-CTD and pSer2-CTD levels

significantly increased on viral loci in the absence of pUL79

compared to those in the presence of pUL79 (Fig. 5A). However,

the increase of unphosphorlyated CTDs on viral loci also

paralleled that of phosphorylated CTD (Fig. 5A). Therefore

pUL79 abrogation appeared to elevate all forms of CTD

modifications tested at viral loci.

To more specifically determine whether the elevated accumu-

lation of RNAP II on viral DNA arose from a specific CTD

modification in the absence of pUL79, we normalized the ChIP

occupancy values of pSer5-CTD, pSer2-CTD, and unphosphory-

lated CTD to that of total RNAP II. Occupancies of various CTD

modifications were proportional to that of total RNAP II, and we

found no evidence for the preferential occupancy of a particular

CTD modification on any viral locus examined (Fig. 5B).

Therefore, elevated RNAP II occupancy in the absence of

pUL79 was unlikely to be due to the dysregulation of CTD

phosphorylation. Consistently, protein levels of CTD kinases

(Cyclin T1 and CDK9) and CTD phospho-isoforms (pSer2-CTD,

pSer5-CTD, pSer5/pSer2-CTD) were not altered by the presence

or absence of pUL79 (Fig. 3). These results together indicate that

pUL79 is not involved in phosphorylation of RNAP II CTD, and

suggest that without pUL79, RNAP II simply stalls during the

transcription cycle, resulting in its elevated accumulation at viral

loci.

pUL79 alters the rate of transcriptional elongation at viral
loci

Based on the above results, we hypothesized that pUL79 was

required for efficient elongation of RNAP II-driven transcrip-

tion at viral loci. To test this, we determined RNAP II

elongation activity using a nuclear run-on (NRO) assay. The

NRO assay allowed us to monitor the contribution of RNAP II

transcriptional activity to transcript levels independent of the

effect of RNA stability [70]. To do this, HFF cells were infected

with ADddUL79 in the presence or absence of Shld1 and the

nuclei of infected cells were isolated at 24 hpi (early timepoint)

or 72 hpi (late timepoint) and analyzed by NRO assay. The

amounts of newly synthesized run-on RNA were measured by

quantitative reverse transcription-coupled quantitative PCR

(RT-qPCR) analysis using primers specific to the promoter or

transcript regions of viral genes or cellular genes (Fig. 6A and

Table S2). Additionally, total RNA was also harvested to

monitor the total transcript accumulation.
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We found that in the absence of pUL79, the run-on RNA levels

of both MIE and late genes (UL99 and UL32) were reduced at late

times of infection (72 hpi) to approximately 40% of those in the

presence of pUL79 (Figs. 6B–6C). The run-on RNA levels of early

genes (UL44 and UL54) without pUL79 were also reduced to

approximately 60% of those with pUL79 (Fig. 6C). As RNAP II

transcribes at the rate of 1.3–4.0 kb/minute [71], our NRO assay

was performed for 30 minutes, which is long enough for RNAP II

to transcribe all the viral genes tested. However, without pUL79,

RNAP II still failed to transcribe viral genes at the levels

comparable to those in pUL79-containing controls at late times

of viral infection. We have observed more RNAP II on viral loci in

the absence of pUL79 during late stages of viral infection (Figs. 4–

5). If these RNAP II complexes functioned properly, we would

expect more RNA transcripts to be made in a NRO assay that

specifically measured the transcriptional elongation rate. However,

we instead found that the RNAP II elongation rate was reduced on

viral loci in the absence of pUL79. This is consistent with the

hypothesis that the slow-moving RNAP II complexes jammed

along viral loci, resulting in its excessive accumulation on viral

DNA. Finally, the run-on transcript levels of early genes were

indistinguishable at early times of viral infection (i.e. 24 hpi) with

Figure 2. pUL79 interacts with the RNAP II protein complex. In (A–B), HFFs were infected as described in Fig. 1, and at 72 hpi cell lysates were
immunoprecipitated using either an anti-FLAG antibody (A) or anti-Rpb1 antibody N-20 (B). Immunoprecipitated proteins and lysate inputs were
analyzed by immunoblotting. To examine the efficiency of nuclease digestion, the immunoprecipitated samples were also analyzed on an ethidium
bromide (EtBr)-stained agarose gel. In (C–D), nuclear lysates from HEK-293T cells transiently expressing HA-tagged pUL79 or empty vector control
were prepared at 72 hours post transfection. Lysates were immunoprecipitated using either an anti-HA antibody (C) or anti-Rpb1 antibody 8WG16
(D). Immunoprecipitated proteins and lysate inputs were analyzed by immunoblotting. The clone names of antibodies used in immunoblot analysis
are shown. Representative results from three independent experiments are presented.
doi:10.1371/journal.ppat.1004350.g002
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or without pUL79 (Fig. 6C). Therefore, we conclude that pUL79

is required for the RNAP II elongation on viral loci at late times of

viral infection.

As a control, we also examined the run-on RNA levels of host

genes GAPDH, RPL30 (which encodes a 60S ribosomal protein),

and MxA (which is a human interferon stimulated gene). Both

GAPDH and RPL30 possess a pattern of histone modifications

typical of permissive chromatin, similar to those associated with

most CMV viral loci during late times of infection [72]. MxA does

not encode a TATA box in its promoter [73] and its transcription

is suppressed during HCMV infection [74]. In contrast to viral

genes, neither the run-on RNA levels nor total RNA accumula-

tions of three host genes were altered by pUL79 at early or late

times of viral infection (Fig. 6D). This is consistent with the ChIP

analysis in that the occupancy of RNAP II at GAPDH was found

unaltered in the absence of pUL79 (Fig. 4B), and indicates that

RNAP II does not stall at host genomic loci even without pUL79.

Therefore, pUL79 is specifically required for efficient transcription

of viral genes but not host genes.

The HCMV genome is dense and many viral regions are

transcribed in both directions, resulting in multiple overlapping or

co-terminal transcripts. Therefore, the result of analyzing only one

viral locus may be complicated by the presence of overlapping

transcripts from neighboring genes. We therefore also examined

the RNAP II occupancy and elongation rate at multiple loci of

UL48 (Fig. 7A), the longest HCMV gene with late kinetics and

where RNAP II occupancy has been characterized in a previous

study [75]. Similar to other late viral genes that we examined in

this study, RNAP II occupancy on all three loci of the UL48

region examined was increased in the absence of pUL79 (Fig. 7B).

Without pUL79, RNAP II accumulated excessively throughout

the UL48 transcribed region, in proportion to its CTD phosphor-

ylations (Figs. 7C–D). However, UL48 transcripts failed to

accumulate efficiently in the absence of pUL79 at late times of

viral infection (Fig. 7E). Consistently, at late times of infection

RNAP II elongation was reduced on all three UL48 loci in the

absence of pUL79, even though the reduction in elongation rates

appeared to vary among different UL48 loci (Fig. 7F).

Taken together, our results from the NRO assay provide

definitive evidence that pUL79 positively regulates the transcrip-

tion rates of viral genes but not those of host genes. In the absence

of pUL79, RNAP II may still elongate at viral loci but does so at a

much slower pace at late times of infection, and ultimately fails to

support productive viral gene transcription and viral progeny

production.

Discussion

In this study, we discovered a novel regulatory mechanism of

viral transcription mediated by HCMV protein pUL79. We

identified cellular RNA polymerase II (RNAP II) as a key factor

that interacted with pUL79. This interaction did not alter the

overall accumulation of total RNAP II or its various phospho-

isoforms during viral infection. Rather, our data suggest that this

interaction allowed pUL79 to act as a virus-encoded elongation

factor to stimulate transcriptional elongation activity of RNAP II

on viral loci during late stages of viral infection where pUL79 is

expressed. Without pUL79, RNAP II elongation failed to proceed

efficiently and stalled on the viral genome. This caused slow

turnover and excessive amounts of RNAP II accumulation on viral

loci. Ultimately, this led to the failure of productive viral late

transcription and progeny production.

Why is pUL79 only required for viral transcription at late

times but not at early times during infection, even though

pUL79-mediated regulation occurs at viral loci of all three kinetic

classes (immediate-early, early, and late) (Fig. 6)? pUL79 is a late

protein and is not expressed until late times of infection. We and

others have shown that immediate-early and early genes are

transcribed efficiently at early times before pUL79 is expressed

(Fig. 6) [42,43]. It is possible that some transcripts made at early

times are stable and persist to late times of infection. When overall

transcript accumulations were analyzed, the presence of these pre-

existing transcripts could render it difficult to reveal the effect of

pUL79 on transcription of immediate-early and early genes at late

times during infection. However, the NRO assay measures relative

transcription elongation rates at specific gene loci at defined times

post infection, and is not affected by pre-existing transcripts.

Therefore, it reveals more viral genes than previously expected

where pUL79 drives the transcription during late times of viral

infection. A more systematic NRO analysis, such as global run-on

sequencing (GRO-seq) of virally infected cells, will further define

the scope of viral transcription regulated by pUL79.

Many viral factors have been shown to enhance transcription

subsequent to initiation through diverse mechanisms. HIV Tat

binds to host positive transcription elongation factor (P-TEFb) to

remove the blockage of transcription elongation imposed by NELF

and DSIF. The Tat/P-TEFb complex stimulates elongation and

Figure 3. pUL79 does not alter protein accumulations of RNAP
II. HFFs were infected with ADddUL79 at an MOI of 3 in the presence or
absence of 1 mM Shield-1 (Shld1). Cells were harvested at different
times post infection and protein accumulation was analyzed by
immunoblot analysis with antibodies recognizing various subunits
and isoforms of RNAP II, cellular CTD kinases (cyclin T1, CDK9), or viral
proteins (immediate-early protein IE1, early-late protein pUL44, late
protein pp71). The protein accumulation of the ddFKBP tagged pUL79
was monitored by an antibody recognizing the FKBP-epitope.
Representative results from three independent experiments are shown.
doi:10.1371/journal.ppat.1004350.g003
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co-transcriptional processing of proviral transcripts (Reviewed in

[76]). During human adenovirus (HAdV) infection, viral protein

E1A recruits hPaf1 complex to enhance transcriptional elongation

of viral early genes [77]. In herpesviruses, HSV-1 ICP27 interacts

with RNAP II CTD to recruit the RNAP II complex to viral

promoters [78]. HSV-1 ICP22 binds cdk9 to reduce the serine-2

phosphorylated CTD form of RNAP II [79–81]. Together, they

regulate the recruitment and proteasome-dependent degradation

of RNAP II complex during infection to facilitate viral gene

transcription. However, during HCMV infection, RNAP II

complex does not undergo extensive protein degradation. In

contrast, various isoforms of RNAP II, including the serine-2

phosphorylated CTD form, accumulate as viral infection pro-

gresses (Fig. 3). pUL79 does not alter either RNAP II protein

accumulation (Fig. 3) or enhance RNAP II recruitment (Fig. 4).

Therefore, pUL79 uses a mechanism distinct from other known

viral transcriptional elongation regulators to facilitate RNAP II

elongation.

Recently, human elongin B was shown to increase the efficiency

of RNAP II elongation on viral loci [75]. The siRNA knockdown

of elongin B decreases viral mRNA expression as well as reduces

RNAP II protein accumulation and occupancy of its serine-2

phosphorylated form on viral loci [75]. Interestingly, elongin B is

required for viral mRNA expression of various kinetic classes

throughout the whole infection cycle. In contrast, pUL79 is only

required at late stages of infection and does not appear to alter the

occupancy of various CTD phospho-isoforms of RNAP II on viral

loci (Fig. 5). Whether pUL79 interacts with host elongation factors

such as elongin B to exert its activity, or how pUL79 selectively

modulates the transcription elongation complex at late times of

infection, requires further exploration.

What is the potential mechanism for pUL79 to modulate the

elongation rate of RNAP II? It is possible that pUL79 enhances

promoter clearance, a step in which RNAP II transfers from the

initiation state to the elongation state (Fig. 8A). During the

transcription cycle, RNAP II is recruited to promoters by cellular

TATA-box binding protein (TBP) and other general transcription

factors (GTFs) to form the pre-initiation complexes (PIC). The

PIC places RNAP II at transcription start sites, denatures DNA,

and positions DNA into the RNAP II active site for transcription

[82]. Once transcription initiates, RNAP II dissociates from the

PIC and recruits elongation factors for efficient transcription. The

dissociation of RNAP II from the PIC is mediated by TFIIH and

other cellular kinases to facilitate exchange between initiation

factors and elongation factors [83,84]. Inefficient dissociation from

PIC reduces the rate of RNAP II elongation, resulting in the

Figure 4. pUL79 alters RNAP II occupancy at viral loci. (A) Schematic representation of the HCMV genes and host GAPDH gene examined by
chromatin immunoprecipitation assay (ChIP). Locations and sizes of primer-probe pairs used in ChIP-qPCR analysis are indicated. (B) HFF cells were
infected with ADddUL79 at an MOI of 3 in the presence or absence of 1 mM Shld1. Cell extracts were prepared at 72 hpi and analyzed by ChIP assay
using rabbit an anti-RNAP II antibody N-20. Normal rabbit IgG was included as a control for non-specific immunoprecipitation. Amounts of input and
precipitated (output) DNAs were quantified by qPCR with primers specific for indicated viral loci or human GAPDH. The output-to-input DNA ratios
were determined from four independent ChIP experiments with standard deviations calculated by Prism 6 software. Statistical analysis was
performed using Student’s t test (**, P,0.01; ***, P,0.005; ****, P,0.0001; NS, not significant). (C) HFF cells were infected with ADflagUL79 or ADwt
at an MOI of 3. Cell extracts were prepared at 72 hpi and analyzed by ChIP assay using anti-FLAG antibody. Normal mouse IgG was included as a
control. Amount of input and precipitated (output) DNAs were quantified by qPCR with primers used in (B). The output-to-input DNA ratios were
determined from three independent ChIP experiments with standard deviations calculated by Prism 6 software. Statistical analysis was performed
using Student’s t test (*, P,0.05; **, P,0.01).
doi:10.1371/journal.ppat.1004350.g004
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failure to transcribe genes [83]. Several herpesviral proteins have

been reported to act as viral transcription initiation factors to form

a unique viral PIC. For example, the homologues of HCMV

UL87 in gamma-herpesviruses were reported to encode viral TBPs

and regulate late transcript accumulation [23,50]. However, in

general TBP loads onto the promoter independent of other factors,

and this is consistent with the observation that EBV BcRF1

(homologue of HCMV pUL87) binds to the viral promoter

independent of any other partners [50]. Because of this and also

the observation that the total RNAP II accumulation on viral loci

is not reduced in the absence of pUL79 (Fig. 4B), we hypothesize

that pUL79 is not required for the recruitment of pUL87 or

subsequently RNAP II to viral promoters. MHV68 ORF30 and

ORF34, homologues of HCMV UL91 and UL95, are shown to be

required for RNAP II recruitment to viral late promoters [48].

However, RNAP II recruitment to viral promoters is not reduced

in the absence pUL79, suggesting that pUL79 is not required for

this putative activity of pUL95 (Fig. 4B). Together, we hypothesize

that pUL79 is not required for transcription initiation (Fig. 4B).

However, the elongation rate of RNAP II at viral loci is reduced

Figure 5. pUL79 does not alter a particular phosphorylated form of the RNAP II CTD domain. HFF cells were infected with ADddUL79 at
an MOI of 3 in the presence or absence of 1 mM Shld1. Cell extracts were harvested at 72 hpi and analyzed by ChIP assays. Rabbit antibody to pSer2
CTD, rat antibody to pSer5-CTD, and mouse antibody to non-phosphorylated CTD (8WG16) were used in ChIP assays. Normal rabbit, rat, and mouse
IgGs were included as controls for non-specific precipitation, respectively. Immunoprecipitated DNAs were analyzed as described in Fig. 4B and the
output-to-input DNA ratios are presented in (A). In addition, the immunoprecipitated amount of each phosphor-isoform of RNAP II CTD relative to
that of total RNAP II (immunoprecipitated with antibody N-20) was also calculated and presented in (B). Data from four independent experiments
were collected with standard deviations calculated by Prism 6 software. Statistical analysis was performed using Student’s t test (*, P,0.05; **, P,

0.01; ***, P,0.005).
doi:10.1371/journal.ppat.1004350.g005
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drastically, suggesting that pUL79 is essential for a transcription

step downstream of initiation (Fig. 6). Strikingly, pUL79 co-

purifies with pUL87 and pUL95, two viral factors potentially

involved in viral PIC assembly (Table 1). Therefore, even though

pUL79 is unlikely to facilitate pUL87 and pUL95 to mediate viral

PIC assembly, it is intriguing to speculate that pUL79 may

regulate the activity of pUL87 and pUL95 downstream of

transcription initiation. As the viral PIC complex may not be

recognized by host dissociation factors, it is possible that pUL79

plays a role in the release of RNAP II from viral PIC prior to

elongation (Fig. 8A). To test this, further analysis is required to

determine the composition of RNAP II/viral PIC as well as their

distribution on the viral DNA.

It is also possible that pUL79 plays a role in epigenetic

regulation to modulate viral transcription (Fig. 8B). During

HCMV infection, viral DNA is chromatinized and undergoes

histone modifications to facilitate gene expression [85]. In

particular, upon the onset of viral DNA replication, newly

synthesized viral DNA is wrapped with histone 3 with lysine 4

methylation (H3K4me2), a modification that favors active

transcription, suggesting the potential involvement of epigenetic

regulation in viral late transcription [72]. Even though pUL79 was

not required for methylating H3K4 [72], the possibility remains

that pUL79 may act as an epigenetic reader to recognize histone

modifications unique to viral DNA, and unwrap viral DNA

packaged by histones to facilitate RNAP II elongation (Fig. 8B).

How does pUL79 specifically regulate transcription of viral loci?

In this study, we showed that pUL79-mediated transcriptional

regulation was limited to viral genes, but not host genes (i.e.

GAPDH, RPL30, and MxA). This specificity may be partially due

to the localization of pUL79 during infection as pUL79 is enriched

in viral replication compartments where late viral transcription

occurs [42]. In addition, late promoters of beta- and gamma-

herpesviruses contain a non-canonical TATA box sequence [50].

EBV BcRF1, the homologue of HCMV pUL87, is a viral TATA-

box binding protein which preferentially binds to this non-

canonical TATA box over the canonical sequence. This suggests

that viral transcription machinery directs RNAP II to viral late

promoters during late stages of viral infection [50]. In HCMV,

several characterized viral late promoters also contain the same

non-canonical TATA sequences [86–91]. Therefore, pUL79 may

also act as a viral specific TATA-box binding protein. However, in

this study we observed an overall decrease in transcription rates

among all three kinetic classes of viral loci during late times of

infection (Fig. 6). Further analysis is needed to understand how

pUL79 can regulate the rate of viral transcription regardless of the

structures of gene promoters.

In this study, we found that pUL79 also co-purified with other

viral regulators of HCMV late gene expression, suggesting that

pUL79 may interact with these regulators to form complexes

during viral infection (Table 1). It is not known whether these viral

regulators use similar mechanisms to regulate viral transcription.

For example, pUL91 and pUL92 were shown to specifically

regulate only true late genes [41]. It is possible that these

regulators have conserved functions and yet still possess different

specificities. In addition, pUL79 also co-purified with viral DNA

replication factors (Table 1). Previously, we have shown that

pUL79-mediated viral transcription requires the onset of viral

DNA synthesis [42]. Expression of neither pUL79 alone nor the

combination of all known late gene regulators alters the expression

kinetics of viral genes, especially viral late genes [41,42].

Therefore, it is also possible that viral DNA synthesis events

predispose viral DNA to late transcription via interactions between

replication factors and pUL79.

In conclusion, we have used a systematic proteomic approach to

elucidate the mechanism underlying the activity of the HCMV late

gene expression regulator pUL79. pUL79 interacts with RNAP II

to modulate its transcription rate at viral loci during late times of

viral infection. This unique viral mechanism is potentially

conserved among beta- and gamma- herpesviruses, and provides

insight into the design of novel antivirals targeting steps after viral

DNA synthesis.

Materials and Methods

Plasmids and reagents
pYD-C755 (i.e. pLKO) was a pLKO-based lentiviral vector

(also referred as pLKO.DCMV.TetO.mcs in [92], a generous gift

from Roger Everett, University of Glasgow Centre for Viral

Research). pYD-C751 (i.e. pLKO-HA-pUL79) was created by

cloning a PCR fragment containing the UL79 coding sequence

along with an N-terminal hemagglutinin (HA) tag into the multiple

cloning site of pYD-C755. pYD-C744 was derived from pGalK

[93], and carried a cassette in which 36FLAG tag was followed by

a GalK/kanamycin dual expression cassette flanked by the Flp

recognition target (FRT) sequence [94].

The synthetic chemical ligand Shield-1 (Shld1) used to regulate

the stability of ddFKBP-tagged proteins was purchased from

Cheminpharma (Farmington, CT). Benzonase was purchased

from EMD Millipore. The following primary antibodies were used

in this study: anti-beta actin (clone AC15, Abcam); anti-FLAG

(clone M2/F1804 and M2/F3165, Sigma-Aldrich); anti-HA (clone

16B12, Covance; clone 3F10, Roche); anti FKBP12 (clone 8/

FKBP12, BD Biosciences); anti-Rpb1 (clone N-20 from Santa

Cruz to detect total Rpb1; or clone 8WG16 from Abcam to detect

both total Rpb1 and the unphosphorylated CTD form of Rbp1);

anti-Rpb2 (S-20, Santa Cruz); anti-Rpb1 phospho-CTD Ser5/

Ser2 (clone H-14, Covance); anti-Rpb1 phospho-CTD Ser5 (clone

3E8, Millipore); anti-Rpb1 phospho-CTD Ser2 (ab5095, Abcam);

anti-CDK9 (clone H-169, Santa Cruz); anti-cyclin T1 (clone H-

245, Santa Cruz); anti-pUL44 (clone 10D8, Virusys); anti-IE1,

anti-pp28, and anti-pp71 (generous gifts from Thomas Shenk,

Princeton University).

Cells and viruses
Primary human newborn foreskin fibroblasts (HFFs) and HEK-

293T cells were propagated in Dulbecco modified Eagle medium

(DMEM) supplemented with 10% fetal calf serum, nonessential

amino acids, sodium pyruvate, and penicillin-streptomycin.

Three HCMV recombinant viruses, ADwt, ADddUL79, and

ADflagUL79, were used in this study. The wildtype virus ADwt
was reconstituted from the BAC-HCMV clone pADwt (also

referred as pAD-GFP in the previous study [42]). pADwt carries

the full-length genome of HCMV strain AD169, with the

exception that it contains a simian virus 40 (SV40) early

promoter-driven green fluorescent protein (GFP) gene in place

of the viral US4–US6 region that is dispensable for viral

replication in HFFs [95,96]. ADddUL79 was derived from ADwt
using BAC recombineering, where the pUL79 coding sequence

was fused to that of destabilizing domain ddFKBP [42].

ADflagUL79 was reconstituted from the BAC clone pAD-

flagUL79. This BAC clone was derived from pADwt, and was

constructed by using a linear recombination approach in the

bacterial strain SW105 that contained an arabinose-inducible Flp

gene for the transient expression of Flp recombinase [94]. Briefly,

the cassette that carried 36FLAG followed by the GalK/

kanamycin dual marker was first generated by PCR from pYD-

C744 with a pair of 70-bp primers, so that the PCR-generated
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cassette was also flanked by 50-bp viral sequences immediately

upstream or downstream of the 59-end of the UL79 coding

sequence. The cassette was recombined into pADwt at the 59-end

of the UL79 coding sequence by using linear recombination. The

GalK/kanamycin marker was subsequently removed by Flp-FRT

recombination [94]. The final clone pADflagUL79 contained the

36FLAG sequence along with a small FRT site fused in frame at

the 59-terminus of the UL79 coding sequence (Fig. 1A).

To reconstitute virus, 2 mg of the BAC-HCMV DNA and 1 mg

of the pp71 expression plasmid were transfected into HFF cells by

electroporation [96], and the culture medium was changed

24 hours later. For reconstitution of ADddUL79 virus, Shld1

was added every 48 hours to maintain the concentration at 1 mM.

Reconstituted virus was harvested by collecting cell-free culture

supernatant when the entire monolayer of cells was lysed. To

produce virus stocks, cell-free culture supernatants were collected

from HFFs infected at an MOI of 0.01. Viruses were pelleted by

ultracentrifugation through a 20% D-sorbitol cushion at an

average relative centrifugal force of 53,0006g for 1 hour,

resuspended in DMEM with 10% tissue fetal calf serum, and

saved as viral stocks. HCMV titers were determined by 50%

culture infectious dose (TCID50) assay in HFFs [42].

Transient transfection
Four mg of plasmid DNA and 12 ml polyethylenimine (PEI)

(1 mg/ml, Polysciences) were mixed with 100 ml OPTI-MEM

(Invitrogen) and incubated at room temperature for 10 minutes.

The mixture was then added to 900 ml complete medium

containing 10% fetal calf serum, and applied to 56106 HEK-

293T cells that were seeded one day before. Cells were incubated

for 4 hours before medium was changed.

Analysis of immunoprecipitation, mass spectrometry,
and immunoblotting

For total cell lysates, immunoprecipitation was performed using

a protocol modified from previous studies [67,97,98]. In brief,

HFF cells (56107) were infected with HCMV ADflagUL79 or

ADwt at a multiplicity of infection (MOI) of 3. At 72 hpi, cells

were collected, rinsed twice with cold phosphate-buffered saline

(PBS), and lysed in 2 ml EBC2 buffer (50 mM Tris [pH 8.0],

300 mM NaCl, 0.5% NP40) supplemented with protease and

phosphatase inhibitors. Cell lysates were then supplemented with

250 unit (U) Benzonase nuclease (Millipore), incubated at 4uC for

15 minutes. One aliquot of cell lysates was saved as the input

control and boiled in the LDS sample buffer in the presence of

sample reducing agent (Novex). The remainder was clarified by

centrifugation at 10,0006g at 4uC for 15 minutes. The superna-

tant was incubated with protein A-dynabeads (Novex) conjugated

with antibody to FLAG (M2) or Rpb1 (N-20) together with an

additional 250 U of Benzonase at 4uC overnight. In addition, to

confirm the nuclease activity of Benzonase, an aliquot of the

supernatant was analyzed on a 0.8% agarose gel containing

100 mg/ml ethidium bromide for the detection of DNA/RNA.

The following day the beads were washed three times with 1 ml

EBC2 buffer and once with EBC2 buffer without NP40. The

immuneprecipitants were eluted by boiling in reducing sample

buffer for 5 minutes. For nuclear extracts, immunoprecipitation

was performed using the Nuclear Complex Co-IP kit according to

the manufacturer’s instructions (Active Motif).

For mass spectrometry analysis, cell lysates were prepared in the

presence of Benzonase (250 U per 56107 HFF cells), and the

efficiency of enzyme digestion was examined in ethidium bromide-

stained agarose gel electrophoresis analysis (Fig. S2). Proteins

precipitated by anti-FLAG antibody were resolved on a NuPAGE

4–12% gradient gel (Novex) and subsequently stained using a

ProteoSilver Silver Stain kit (Sigma-Aldrich) according to the

manufacturer’s instruction. Protein bands unique to ADflagUL79-

infected sample were extracted. In addition, gel bands from the

ADwt-infected sample with migrating positions corresponding to

those of ADflagUL79-specific bands were also extracted as

negative controls. Extracted gel samples were submitted to the

Keck Mass Spectrometry and Proteomics Facility (School of

Medicine, Yale University) for liquid chromatography (LC)-mass

spectrometry analysis for protein identification.

Protein amounts were determined by immunoblot analysis as

previously described [42]. In brief, proteins were resolved on an

SDS polyacrylamide gel, transferred to a polyvinylidene difluoride

(PVDF) membrane, hybridized with a primary antibody, reacted

with the horseradish peroxidase-conjugated secondary antibody,

and visualized using chemiluminescent substrate (Thermo Scien-

tific).

Chromatin immunoprecipitation (ChIP)
The ChIP was performed using the MAGnify chromatin-

immunoprecipitation system (Life Technologies) and reagents

provided in the kit according to the manufacturer’s protocol with

modifications. To prepare the chromatin lysates of ADddUL79

infected cells, 26106 HFFs were infected with ADddUL79 at an

MOI of 3.0 in the presence or absence of Shld1. To prepare the

chromatin lysates of ADflagUL79 or ADwt infected cells, 26106

HFFs were infected with ADflagUL79 or ADwt viruses without

Shld1. At 72 hours, infected cells were washed twice with PBS,

trypsinized, and crosslinked with 1% formaldehyde at room

temperature with mixing for 10 minutes. Glycine was added to the

final concentration of 125 mM and incubated at room temper-

ature for 5 minutes to stop the cross-linking reaction. Cells were

collected by centrifugation at 4uC, 2006g for 10 minutes, washed

twice in ice-cold PBS, and lysed in 100 ml lysis buffer with protease

inhibitors. Chromatins were sheared into 200–500 bp fragments

using either a cup-horn Branson Sonifier 450 (30-second pulse and

60% output with 40-second interval for 70 times in ice water) or a

NGS Bioruptor (Diagenode) (3610 cycles of 15-seconds on/45-

seconds off in a automatic water cooling system). Samples were

gently vortexed every five sonication cycles and allowed to cool in

ice water for an additional 2 minutes. Lysates were cleared by

Figure 6. pUL79 alters the rate of transcriptional elongation at viral loci. (A) Schematic representation of the HCMV genes and host genes
examined by the nuclear run-on (NRO) assay. Locations and sizes of primer-probe pairs used in subsequent RT-qPCR analysis are indicated. (B–D)
HFFs were infected with ADddUL79 at an MOI of 3 in the presence or absence of 1 mM Shld1 (indicated by ‘‘+’’ or ‘‘2’’ sign, respectively). Nuclear
extracts were prepared at 24 or 72 hpi and analyzed by NRO assays. Transcription elongation was allowed to resume for 30 minutes in the presence
of biotin-labeled UTP, labeled RNA was isolated, and their amounts were determined by RT-qPCR. In addition, accumulations of total RNAs were also
determined by RT-qPCR. The normalized amounts of viral run-on transcripts or total transcripts in the presence of Shld1 were set at 1 for the NRO
assay or total transcript accumulation analysis, respectively. (B) Relative amounts of total and run-on transcripts of viral late genes UL99 and UL32. (C)
Relative amounts of run-on and total transcripts of viral immediate-early and early genes. (D) Relative amounts of run-on and total transcripts of host
genes. Data from three independent experiments were collected and standard deviations were calculated by Prism 6 software. Statistical analysis was
performed using Student’s t test (**, P,0.01; ***, P,0.005; NS, not significant).
doi:10.1371/journal.ppat.1004350.g006
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centrifugation (20,0006g, 15 minutes; 4uC) and stored as 20-ml

aliquots. To confirm the size of sheared chromatin fragments, one

20-ml aliquot was treated with RNase A at 37uC for 1 hour and de-

crosslinked by protease K treatment overnight. DNA was purified

and analyzed by agarose gel electrophoresis (data not shown).

To immunoprecipitate protein-bound chromatin fragments,

each 20-ml aliquot was diluted in dilution buffer with protease

inhibitors, and first incubated with 40 ml BSA-preblocked protein

A/G Dynabeads to pre-clean for 2 hours. Beads were removed,

and one tenth volume of the supernatant was saved as the input

sample. The remainder of the supernatant was incubated with

appropriate antibodies to generate protein-antibody complexes or

with IgG (negative control) (Table S1) at 4uC for 16 hours. Forty

ml BSA-preblocked protein A/G Dynabeads (Invitrogen) was

added to the samples and incubated at 4uC for another 1.5 hours

to immunoprecipitate the complexes. Beads were collected,

washed twice with IP Buffer 1 and three times with IP Buffer 2.

Protein-antibody complexes were eluted from Dynabeads by

incubation with reverse crosslinking buffer with proteinase K at

55uC for 15 minutes. Dynabeads were removed, and crosslinking

of protein-antibody complexes in the supernatant were reversed by

incubation at 65uC for 15 minutes. In addition, the input sample

was also treated with the reverse crosslinking buffer in the same

procedure to reverse crosslinking. Both input and immunoprecip-

itated DNAs were isolated by DNA purification on magnetic

beads. DNA fragments were quantified by quantitative PCR

Figure 7. pUL79 alters the rate of transcriptional elongation at various regions of the UL48 gene. (A) Schematic representation of the
HCMV gene UL48. Primer-probe pairs used for analysis are indicated. (B–D) HFF cells were infected with ADddUL79 at an MOI of 3 in the presence or
absence of 1 mM Shld1. Cell extracts were harvested at 72 hpi and analyzed by ChIP assays as described in Fig. 4 and Fig. 5. (B) represents the output-
to-input DNA ratios of RNAP II ChIP. (C) represents the output-to-input DNA ratios of pSer5-CTD, pSer2-CTD, and non-phosphorylated CTD ChIPs. (D)
represents the immunoprecipitated amount of each phosphor-isoform of RNAP II CTD relative to that of total RNAP II (immunoprecipitated with
antibody N-20). Data from four independent experiments were collected with standard deviations calculated by Prism 6 software. (E–F) HFFs were
infected with ADddUL79 at an MOI of 3 in the presence or absence of 1 mM Shld1 (indicated by ‘‘pUL79+’’ or ‘‘pUL792’’, respectively). Nuclear extracts
were prepared at 72 hpi and analyzed by NRO assay as described in Fig. 6. Relative amounts of total transcripts and run-on are presented in (E) and
(F), respectively. Statistical analysis was performed using Student’s t test (*, P,0.05; **, P,0.01; ***, P,0.005).
doi:10.1371/journal.ppat.1004350.g007

Figure 8. Potential role of pUL79 in RNAP II-mediated viral transcription. During late times of viral infection where pUL79 is expressed, we
propose two models where pUL79 may act as an elongation factor to facilitate viral transcription. (A) In the ‘‘promoter clearance’’ model, pUL87,
pUL92, pUL95, and potentially other viral factors (shown as red dashed circles) form viral protein pre-initiation complexes (vPIC) to recruit RNAP II to
viral promoters. Once transcription initiates, pUL79 interacts with the vPIC to release RNAP II from the vPIC for efficient elongation. In the absence of
pUL79, RNAP II is unable to dissociate from vPIC and fails to recruit elongation factors for continued transcription. (B) In the ‘‘epigenetic reader’’
model, pUL79 acts as an epigenetic reader to recognize chromatin modification(s) to facilitate RNAP II elongation. During late times of infection,
newly synthesized viral DNA is wrapped with specific histone modifications (shown as purple dashed ovals). pUL79 recognizes these modifications,
and then dissociates viral DNA from chromatin binding, with or without other cellular/viral factors, to facilitate RNAP II elongation. In the absence of
pUL79, RNAP II is unable to pass through the unopened chromatin, resulting in transcriptional stalling on viral loci.
doi:10.1371/journal.ppat.1004350.g008
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(qPCR) using SYBR Select Mix (Invitrogen) kit or Taqman Fast

Advanced Master Mix kit (Invitrogen). The sequences of primers

and Taqman probes are listed in Table S2.

Nuclear run-on (NRO) assay
The protocol of the NRO assay was adapted from previous

studies with modifications [70,99,100]. 16107 HFFs were infected

with ADddUL79 at an MOI of 3 in the presence or absence of

Shld1. At 72 hpi, cells were washed twice with PBS, trypsinized,

collected by centrifugation (4uC, 2706g), and washed twice with

cold PBS again to remove residual calcium and magnesium. To

extract nuclei, cell pellets were resuspended in 4 mL cell lysis

buffer (10 mM Tris-HCl, pH 7.2, 3 mM MgCl2, 10 mM NaCl,

150 mM sucrose, and 0.5% NP40) for 5 minutes on ice. Extracted

nuclei were collected by centrifugation (4uC, 1706g) and gently

washed with cell lysis buffer to remove NP40. Pellets were

resuspended in 300 ml freezing buffer (50 mM Tris-HCl, pH 8.3,

40% glycerol, 5 mM MgCl2, and 0.1 mM EDTA), washed once

with 16 run-on reaction buffer (20 mM Tris-HCl, pH 7.5,

10 mM MgCl2, 150 mM KCl, and 20% (v/v) glycerol). To

perform NRO assay, 107 nuclei were incubated in 100 ml 16run-

on reaction buffer with ATP, CTP, GTP (0.5 mM each), and

0.2 mM biotin-16-UTP (Invitrogen) at 29uC for 30 minutes. The

reaction was stopped by snap freezing in liquid nitrogen. As

negative controls, run-on reactions were also performed with UTP

instead of biotin-16-UTP. To isolate biotin-labeled run-on

transcripts, streptavidin-coated Dynabeads (Dynabeads MyOne

Streptavidin C1, Invitrogen) were resuspended in binding buffer

(10 mM Tris-HCl, pH 7.5, 1 mM EDTA, and 2 M NaCl), and

mixed with an equal volume of run-on transcripts. The samples

were incubated at 42uC for 20 minutes and then at room

temperature for 1.5 hours. Beads were collected, and washed

twice with 15% formamide and three times with 26 standard

saline citrate (Invitrogen). Biotinylated RNAs on the beads were

reverse transcribed to generate cDNA using SuperScript VILO

cDNA Synthesis Kit (Invitrogen), and quantified by reverse

transcription-coupled qPCR (RT-qPCR) analysis. The relative

transcript amounts were normalized to those of 18S rRNA (that is

transcribed by RNA polymerase I (RNAP I) so is an unbiased

internal control for RNAP II activity). In addition, total RNA of

infected cells was also isolated separately by TRIzol extraction

(Invitrogen) and the amounts were determined by RT-qPCR

analysis (see Table S2 for primer sequences).

Supporting Information

Figure S1 Accumulation of ddFKBP tagged pUL79 is
regulated by Shld1 during infection. HFFs were infected

with ADddUL79 at an MOI of 3 in the presence or absence of

1 mM Shld1. Nuclear extracts were prepared from infected cells at

different times post infection, and protein accumulation of the

ddFKBP tagged pUL79 was monitored by an antibody recogniz-

ing the FKBP-epitope. Viral immediate-early protein IE1 and host

protein actin were used as infection and loading controls,

respectively, and detected by immunoblotting with respective

antibodies. Representative results from three independent exper-

iments are shown.

(TIF)

Figure S2 Nuclease digestion of immunoprecipitated
samples from infected cell lysates for mass spectrom-
etry analysis. To prepare samples for mass spectrometry

analysis as depicted in Fig. 1D, cell lysates were treated with or

without Benzonase (250 U per 56107 HFF cells) and the efficiency

of enzyme digestion was examined on an ethidium bromide

(EtBr)-stained agarose gel. Only Benzonase-treated samples were

processed for subsequent mass spectrometry to identify pUL79

protein partners.

(TIF)

Figure S3 pUL79 is associated with viral loci during
HCMV infection. The data in Fig. 4C are re-graphed with the

y-axis scales of the output-to-input DNA ratio proper for each

sample set. This allows visualization of the difference between the

FLAG-pUL79 samples relative to the untagged pUL79 controls.

(TIF)

Table S1 Antibodies used in chromatin immunoprecip-
itation assays.

(DOCX)

Table S2 Primers and probes used in ChIP and RT-
qPCR analysis.

(DOCX)
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