509 research outputs found

    Crystal energy functions via the charge in types A and C

    Get PDF
    The Ram-Yip formula for Macdonald polynomials (at t=0) provides a statistic which we call charge. In types A and C it can be defined on tensor products of Kashiwara-Nakashima single column crystals. In this paper we prove that the charge is equal to the (negative of the) energy function on affine crystals. The algorithm for computing charge is much simpler and can be more efficiently computed than the recursive definition of energy in terms of the combinatorial R-matrix.Comment: 25 pages; 1 figur

    The role of Alg13 N-acetylglucosaminyl transferase in the expression of pathogenic features of Candida albicans.

    Get PDF
    Background: The pathogenic potential of Candida albicans depends on adhesion to the host cells mediated by highly glycosylated adhesins, hyphae formation and growth of biofilm. These factors require effective N-glycosylation of proteins. Here, we present consequences of up- and down- regulation of the newly identified ALG13 gene encoding N-acetylglucosaminyl transferase, a potential member of the Alg7p/Alg13p/Alg14p complex catalyzing the first two initial reactions in the N-glycosylation process. Methods: We constructed C. albicans strain alg13∆::hisG/TRp-ALG13 with one allele of ALG13 disrupted and the other under the control of a regulatable promoter, TRp. Gene expression and enzyme activity were measured using RT-qPCR and radioactive substrate. Cell wall composition was estimated by HPLC DIONEX. Protein glycosylation status was analyzed by electrophoresis of HexNAcase, a model N-glycosylated protein in C. albicans. Results: Both decreased and elevated expression of ALG13 changed expression of all members of the complex and resulted in a decreased activity of Alg7p and Alg13p and under-glycosylation of HexNAcase. The alg13 strain was also defective in hyphae formation and growth of biofilm. These defects could result from altered expression of genes encoding adhesins and from changes in the carbohydrate content of the cell wall of the mutant. General significance: This work confirms the important role of protein N-glycosylation in the pathogenic potential of C. albicans

    Increased activity of the sterol branch of the mevalonate pathway elevates glycosylation of secretory proteins and improves antifungal properties of Trichoderma atroviride.

    Get PDF
    Some Trichoderma spp. have an ability to inhibit proliferation of fungal plant pathogens in the soil. Numerous compounds with a proven antifungal activity are synthesized via the terpene pathway. Here, we stimulated the activity of the mevalonate pathway in T. atroviride P1 by expressing the Saccharomyces cerevisiae ERG20 gene coding for farnesyl pyrophosphate (FPP) synthase, a key enzyme of this pathway. ERG20-expressing Trichoderma strains showed higher activities of FPP synthase and squalene synthase, the principal recipient of FPP in the mevalonate pathway. We also observed activation of dolichyl phosphate mannose (DPM) synthase, an enzyme in protein glycosylation, and significantly increased O- and N-glycosylation of secreted proteins. The hyper-glycosylation of secretory hydrolases could explain their increased activity observed in the ERG20 transformants. Analysis of the antifungal properties of the new strains revealed that the hydrolases secreted by the transformants inhibited growth of a plant pathogen, Pythium ultimum more efficiently compared to the control strain. Consequently, the biocontrol activity of the transgenic strains, determined as their ability to protect bean seeds and seedlings against harmful action of P. ultimum, was also improved substantially

    Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.)

    Get PDF
    Tuber species may be regarded as complex microhabitats hosting diverse microorganisms inside their fruiting bodies. Here, we investigated the structure of microbial communities inhabiting the gleba of wild growing (in stands) T. aestivum, using Illumina sequencing and culture-based methods. The two methods used in combination allowed to extract more information on complex microbiota of Tuber aestivum gleba. Analysis of the V3–V4 region of 16S rDNA identified nine phyla of bacteria present in the gleba of T. aestivum ascomata, mostly Proteobacteria from the family Bradyrhizobiaceae. Our results ideally match the earlier data for other Tuber species where the family Bradyrhizobiaceae was the most represented. The ITS1 region of fungal rDNA represented six alien fungal species belonging to three phyla. To complement the metagenomic analysis, cultivable fungi and bacteria were obtained from the gleba of the same T. aestivum fruiting bodies. The identified fungi mostly belong to the phylum Basidiomycota and same to Ascomycota. Analysis of cultivable bacteria revealed that all the specimens were colonized by different strains of Bacillus. Fungal community inhabiting T. aestivum fruiting bodies was never shown before

    Expression of Saccharomyces cerevisiae RER2 Gene Encoding Cis-Prenyltransferase in Trichoderma atroviride Increases the Activity of Secretory Hydrolases and Enhances Antimicrobial Features

    Get PDF
    Some Trichoderma spp. exhibit natural abilities to reduce fungal diseases of plants through their mycoparasitic and antagonistic properties. In this study, we created new Trichoderma atroviride strains with elevated antifungal activity. This effect was achieved by improving the activity of cis-prenyltransferase, the main enzyme in dolichol synthesis, by expressing the RER2 gene from Saccharomyces cerevisiae. Since dolichyl phosphate is the carrier of carbohydrate residues during pro�tein glycosylation, activation of its synthesis enhanced the activities of dolichyl-dependent enzymes,DPM synthase and N-acetylglucosamine transferase, as well as stimulated glycosylation of secretory proteins. Cellulases secreted by the transformants revealed significantly higher levels or activities compared to the control strain. Consequently, the resulting Trichoderma strains were more effective against the plant pathogens Pythium ultimum

    Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes

    Get PDF
    Instrumentation is often used to monitor the performance of engineered infrastructure slopes. This paper looks at the current role of instrumentation and monitoring, including the reasons for monitoring infrastructure slopes, the instrumentation typically installed and parameters measured. The paper then investigates recent developments in technology and considers how these may change the way that monitoring is used in the future, and tries to summarize the barriers and challenges to greater use of instrumentation in slope engineering. The challenges relate to economics of instrumentation within a wider risk management system, a better understanding of the way in which slopes perform and/or lose performance, and the complexities of managing and making decisions from greater quantities of data

    Zero-one Schubert polynomials

    Get PDF
    We prove that if σ∈Sm is a pattern of w∈Sn, then we can express the Schubert polynomial w as a monomial times σ (in reindexed variables) plus a polynomial with nonnegative coefficients. This implies that the set of permutations whose Schubert polynomials have all their coefficients equal to either 0 or 1 is closed under pattern containment. Using Magyar's orthodontia, we characterize this class by a list of twelve avoided patterns. We also give other equivalent conditions on w being zero-one. In this case, the Schubert polynomial w is equal to the integer point transform of a generalized permutahedron

    Closure relations during the plateau emission of Swift GRBs and the fundamental plane

    Full text link
    The Neil Gehrels Swift observatory observe Gamma-Ray bursts (GRBs) plateaus in X-rays. We test the reliability of the closure relations through the fireball model when dealing with the GRB plateau emission. We analyze 455 X-ray lightcurves (LCs) collected by \emph{Swift} from 2005 (January) until 2019 (August) for which the redshift is both known and unknown using the phenomenological Willingale 2007 model. Using these fits, we analyze the emission mechanisms and astrophysical environments of these GRBs through the closure relations within the time interval of the plateau emission. Finally, we test the 3D fundamental plane relation (Dainotti relation) which connects the prompt peak luminosity, the time at the end of the plateau (rest-frame), and the luminosity at that time, on the GRBs with redshift, concerning groups determined by the closure relations. This allows us to check if the intrinsic scatter \sigma_{int} of any of these groups is reduced compared to previous literature. The most fulfilled environments for the electron spectral distribution, p>2, are Wind Slow Cooling (SC) and ISM Slow Cooling for cases in which the parameter q, which indicates the flatness of the plateau emission and accounts for the energy injection, is =0 and =0.5, respectively, both in the cases with known and unknown redshifts. We also find that for the sGRBs All ISM Environments with q=0q=0 have the smallest \sigma_{int}=0.04 \pm 0.15 in terms of the fundamental plane relation holding a probability of occurring by chance of p=0.005. We have shown that the majority of GRBs presenting the plateau emission fulfil the closure relations, including the energy injection, with a particular preference for the Wind SC environment. The subsample of GRBs that fulfil given relations can be used as possible standard candles and can suggest a way to reduce the intrinsic scatter of these studied relationships.Comment: 44 pages, 23 figures; Accepted to the PASJ to be published soo

    Inhibition of Dephosphorylation of Dolichyl Diphosphate Alters the Synthesis of Dolichol and Hinders Protein N-Glycosylation and Morphological Transitions in Candida albicans

    Get PDF
    The essential role of dolichyl phosphate (DolP) as a carbohydrate carrier during protein N-glycosylation is well established. The cellular pool of DolP is derived from de novo synthesis in the dolichol branch of the mevalonate pathway and from recycling of DolPP after each cycle of N-glycosylation, when the oligosaccharide is transferred from the lipid carrier to the protein and DolPP is released and then dephosphorylated. In Saccharomyces cerevisiae, the dephosphorylation of DolPP is known to be catalyzed by the Cwh8p protein. To establish the role of the Cwh8p orthologue in another distantly related yeast species, Candida albicans, we studied its mutant devoid of the CaCWH8 gene. A double Cacwh8∆/Cacwh8∆ strain was constructed by the URA-blaster method. As in S. cerevisiae, the mutant was impaired in DolPP recycling. This defect, however, was accompanied by an elevation of cis-prenyltransferase activity and higher de novo production of dolichols. Despite these compensatory changes, protein glycosylation, cell wall integrity, filamentous growth, and biofilm formation were impaired in the mutant. These results suggest that the defects are not due to the lack of DolP for the protein N-glycosylation but rather that the activity of oligosacharyltransferase could be inhibited by the excess DolPP accumulating in the mutant
    corecore