
ZERO-ONE SCHUBERT POLYNOMIALS
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Abstract. We prove that if σ ∈ Sm is a pattern of w ∈ Sn, then we can express the Schubert polynomial
Sw as a monomial times Sσ (in reindexed variables) plus a polynomial with nonnegative coefficients. This

implies that the set of permutations whose Schubert polynomials have all their coefficients equal to either
0 or 1 is closed under pattern containment. Using Magyar’s orthodontia, we characterize this class by a list

of twelve avoided patterns. We also give other equivalent conditions on Sw being zero-one. In this case, the

Schubert polynomial Sw is equal to the integer point transform of a generalized permutahedron.

1. Introduction

Schubert polynomials, introduced by Lascoux and Schützenberger in [10], represent cohomology classes
of Schubert cycles in the flag variety. Knutson and Miller also showed them to be multidegrees of matrix
Schubert varieties [7]. There are a number of combinatorial formulas for the Schubert polynomials [1, 2,
5, 6, 9, 12, 14, 17], yet only recently has the structure of their supports been investigated: the support of a
Schubert polynomial Sw is the set of all integer points of a certain generalized permutahedron P(w) [4,15].
The question motivating this paper is to characterize when Sw equals the integer point transform of P(w),
in other words, when all the coefficients of Sw are equal to 0 or 1.

One of our main results is a pattern-avoidance characterization of the permutations corresponding to
these polynomials:

Theorem 1.1. The Schubert polynomial Sw is zero-one if and only if w avoids the patterns 12543, 13254,
13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, and 315642.

In Theorem 4.8 we provide further equivalent conditions on the Schubert polynomial Sw being zero-one.
One implication of Theorem 1.1 follows from our other main result, which relates the Schubert polynomials
Sσ and Sw when σ is a pattern of w:

Theorem 1.2. Fix w ∈ Sn and let σ ∈ Sn−1 be the pattern with Rothe diagram D(σ) obtained by removing
row k and column wk from D(w). Then

Sw(x1, . . . , xn) = M(x1, . . . , xn)Sσ(x1, . . . , x̂k, . . . , xn) + F (x1, . . . , xn),(1)

where F ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =

 ∏
(k,i)∈D(w)

xk

 ∏
(i,wk)∈D(w)

xi

 .

Theorem 1.2 is a special case of Theorem 5.8, which applies to the dual character of the flagged Weyl
module of any diagram.

Outline of this paper. Section 2 gives an expression of Magyar for Schubert polynomials in terms of
orthodontic sequences (i,m). In Section 3, we give a condition “multiplicity-free” on the orthodontic se-
quence (i,m) of w which implies that Sw is zero-one. In Section 4 we show that multiplicity-freeness can
equivalently be phrased in terms of pattern avoidance. We then prove in Section 4 that multiplicity-freeness
is also a necessary condition for Sw to be zero-one. In the latter proof we assume Theorem 1.2, whose
generalization (Theorem 5.8) and proof is the subject of Section 5.
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2 ALEX FINK, KAROLA MÉSZÁROS, AND AVERY ST. DIZIER

2. Magyar’s orthodontia for Schubert polynomials

In this section we explain the results we use to show one direction of Theorem 1.1. We include the classical
definition of Schubert polynomials here for reference.

The Schubert polynomial of the longest permutation w0 = n n−1 · · · 2 1 ∈ Sn is

Sw0
:= xn−1

1 xn−2
2 · · ·xn−1.

For w ∈ Sn, w 6= w0, there exists i ∈ [n−1] such that wi < wi+1. For any such i, the Schubert polynomial
Sw is defined as

Sw(x1, . . . , xn) := ∂iSwsi(x1, . . . , xn),

where si is the transposition swapping i and i+ 1, and ∂i is the ith divided difference operator

∂i(f) :=
f(x1, . . . , xn)− f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

xi − xi+1
.

Since the operators ∂i satisfy the braid relations, the Schubert polynomials Sw are well-defined.
We will not be using the above definition of Schubert polynomials in this work. Instead, we will make use

of several results due to Magyar in [13]. We start by summarizing Proposition 15 and Proposition 16 of [13]
and supplying the necessary background, closely following the exposition of [13].

By a diagram, we mean a sequence D = (C1, C2, . . . , Cn) of finite subsets of [n], called the columns of
D. We interchangeably think of D as a collection of boxes (i, j) in a grid, viewing an element i ∈ Cj as a box
in row i and column j of the grid. When we draw diagrams, we read the indices as in a matrix: i increases
top-to-bottom and j increases left-to-right. Two diagrams D and D′ are called column-equivalent if one
is obtained from the other by reordering nonempty columns and adding or removing any number of empty
columns. For a column C ⊆ [n], let the multiplicity multD(C) be the number of columns of D which are
equal to C. The sum of diagrams, denoted D ⊕ D′, is constructed by concatenating the lists of columns;
graphically this means placing D′ to the right of D.

The Rothe diagram D(w) of a permutation w ∈ Sn is the diagram

D(w) = {(i, j) ∈ [n]× [n] | i < (w−1)j and j < wi}.
Note that Rothe diagrams have the northwest property: If (r, c′), (r′, c) ∈ D(w) with r < r′ and c < c′,
then (r, c) ∈ D(w).

Example 2.1. If w = 31542, then

D(w) = = ({1}, {1, 3, 4}, ∅, {3}, ∅).

We next recall Magyar’s orthodontia. Let D be the Rothe diagram of a permutation w ∈ Sn with columns
C1, C2, . . . , Cn. We describe an algorithm for constructing a reduced word i = (i1, . . . , il) and a multiplicity
list m = (k1, . . . , kn; m1, . . . ,ml) such that the diagram Di,m defined by

Di,m =

n⊕
j=1

kj · [j] ⊕
l⊕

j=1

mj · (si1si2 · · · sij [ij ]),

is column-equivalent to D. In the above, m · C denotes C ⊕ · · · ⊕ C with m copies of C; in particular 0 · C
should be interpreted as a diagram with no columns, not the empty column.

The algorithm to produce i and m from D is as follows. To begin the first step, for each j ∈ [n] let
kj = multD([j]), the number of columns of D of the form [j]. Replace all such columns by empty columns
for each j to get a new diagram D−.

Given a column C ⊆ [n], a missing tooth of C is a positive integer i such that i /∈ C, but i+ 1 ∈ C. The
only columns without missing teeth are the empty column and the intervals [i]. Hence the first nonempty
column of D− (if there is any) contains a smallest missing tooth i1. Switch rows i1 and i1 + 1 of D− to get
a new diagram D′.
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In the second step, repeat the above with D′ in place of D. That is, let m1 = multD′([i1]) and replace all
columns of the form [i1] in D′ by empty columns to get a new diagram D′−. Find the smallest missing tooth
i2 of the first nonempty column of D′−, and switch rows i2 and i2 + 1 of D′− to get a new diagram D′′.

Continue in this fashion until no nonempty columns remain. It is easily seen that the sequences i =
(i1, . . . , il) and m = (k1, . . . , kn; m1, . . . ,ml) just constructed have the desired properties.

Definition 2.2. The pair (i,m) constructed from the preceding algorithm is called the orthodontic se-
quence of w.

Example 2.3. If w = 31542, then the orthodontic sequence algorithm produces the diagrams

k1 = 1 i1 = 2

i2 = 3

i3 = 1

D = D(w) D− D′ D′−

D′′ D′′− D′′′ D′′′−

m1 = 0

m2 = 1 m3 = 1

The sequence of missing teeth gives i = (2, 3, 1) and m = (1, 0, 0, 0, 0; 0, 1, 1), so

Di,m = .

Theorem 2.4 ([13, Proposition 15]). Let w ∈ Sn have orthodontic sequence (i,m). If πj = ∂jxj denotes
the jth Demazure operator and ωj = x1x2 · · ·xj, then

Sw = ωk11 · · ·ωknn πi1(ωm1
i1
πi2(ωm2

i2
· · ·πil(ω

ml
il

) · · · )).

Example 2.5. For w = 31542, it is easily checked that

Sw = x1π2π3(x1x2x3π1(x1)).

Theorem 2.4 can also be realized on the level of tableaux, analogous to Young tableaux in the case of
Schur polynomials. A filling (with entries in {1, ..., n}) of a diagram D is a map T assigning to each box in
D an integer in [n]. A filling T is called column-strict if T is strictly increasing down each column of D.
The weight of a filling T is the vector wt(T ) whose ith component wt(T )i is the number of times i occurs
in T .

Given a permutation w ∈ Sn with orthodontic sequence (i,m), we will define a set Tw of fillings of the
diagram Di,m which satisfy

Sw =
∑
T∈Tw

x
wt(T )1
1 x

wt(T )2
2 · · ·xwt(T )n

n .

We start by recalling the root operators, first defined in [11]. These are operators fi which either take a
filling T of a diagram D to another filling of D, or are undefined on T . To define root operators, we first
encode a filling T in terms of its reading word. The reading word of a filling T of a diagram D = Di,m is
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the sequence of the entries of T read in order, down each column going left-to-right along columns; that is
the sequence

T (1, 1), T (2, 1), . . . , T (n, 1), T (1, 2), T (2, 2), . . . , T (n, 2), . . . , T (n, n)

ignoring any boxes (i, j) /∈ D.
If it is defined, the operator fi changes an entry of i in T to an entry of i+ 1 according to the following

rule. First, ignore all the entries in T except those which equal i or i+ 1. Now “match parentheses”: if, in
the list of entries not yet ignored, an i is followed by an i+ 1, then henceforth ignore that pair of entries as
well; look again for an i followed (up to ignored entries) by an i+1, and henceforth ignore this pair; continue
doing this until all no such pairs remain unignored. The remaining entries of T will be a subword of the
form i + 1, i + 1, . . . , i + 1, i, i, . . . , i. If i does not appear in this word, then fi(T ) is undefined. Otherwise,
fi changes the leftmost i to an i + 1. Reading the image word back into D produces a new filling. We can
iteratively apply fi to a filling T .

Example 2.6. If T = 3 1 2 2 2 1 3 1 2 4 3 2 4 1 3 1, applying f1 iteratively to T yields:

T = 3 1 2 2 2 1 3 1 2 4 3 2 4 1 3 1
· 1 2 2 2 1 · 1 2 · · 2 · 1 · 1
· · · 2 2 1 · · · · · 2 · 1 · 1
· · · 2 2 · · · · · · · · 1 · 1

f1(T ) = 3 1 2 2 2 1 3 1 2 4 3 2 4 2 3 1
f2

1 (T ) = 3 1 2 2 2 1 3 1 2 4 3 2 4 2 3 2
f3

1 (T ) is undefined

Define the set-valued quantized Demazure operator π̃i by π̃i(T ) = {T, fi(t), f2
i (T ), . . .}. For a set T

of tableaux, let

π̃i(T ) =
⋃
T∈T

π̃i(T ).

Next, consider the column [j] and its minimal column-strict filling ω̃j (jth row maps to j). For a filling T
of a diagram D with columns (C1, C2, . . . , Cn), define in the obvious way the composite filling of [j] ⊕ D,
corresponding to concatenating the reading words of [j] and D. Define [j]r ⊕ D analogously by adding r
columns [j] to D, each with filling ω̃j .

Definition 2.7. Let w ∈ Sn be a permutation with orthodontic sequence (i,m). Define the set Tw of
tableaux by

Tw = ω̃k11 ⊕ · · · ⊕ ω̃knn ⊕ π̃i1(ω̃m1
i1
⊕ π̃i2(ω̃m2

i2
⊕ · · · ⊕ π̃il(ω̃

ml
il

) · · · )).

Theorem 2.8 ([13, Proposition 16]). Let w ∈ Sn be a permutation with orthodontic sequence (i,m). Then,

Sw =
∑
T∈Tw

x
wt(T )1
1 x

wt(T )2
2 · · ·xwt(T )n

n .

Example 2.9. Consider again w = 31542, so the orthodontic sequence of w is i = (2, 3, 1) and m =
(1, 0, 0, 0, 0; 0, 1, 1). The set Tw is built up as follows:

{} ω̃1−→ {1} π̃1−→ {1, 2} ω̃3−→ {1231, 1232} π̃3−→ {1231, 1241, 1232, 1242}
π̃2−→ {1231, 1241, 1341, 1232, 1233, 1242, 1342, 1343}
ω̃1−→ {11231, 11241, 11341, 11232, 11233, 11242, 11342, 11343}

which agrees with

Sw = x3
1x2x3 + x3

1x2x4 + x3
1x3x4 + x2

1x
2
2x3 + x2

1x2x
2
3 + x2

1x
2
2x4 + x2

1x2x3x4 + x2
1x

2
3x4.

We now describe a way to view each step of the construction of Tw as producing a set of fillings of a
diagram.

Definition 2.10. Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il). For each r ∈ [l],
define

Tw(r) = ω̃mr
ir
⊕ π̃ir+1(ω̃

mr+1

ir+1
⊕ · · · ⊕ π̃il(ω̃il) · · · ).

Set Tw(0) = Tw.
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Definition 2.11. Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il). For any r ∈ [l],
let O(w, r) be the diagram obtained from D(w) in the construction of (i,m) at the time when the row
swaps of the missing teeth i1, . . . , ir have all been executed on D(w), but after executing the row swap of the
missing tooth ir, columns without missing teeth have not yet been removed (mr has not yet been recorded).
Set O(w, 0) = D(w). For each r, give O(w, r) the same column indexing as D(w), so any columns replaced
by empty columns in the execution of the missing teeth i1, . . . , ir−1 retain their original index in D(w).

The motivation behind Definition 2.10 and Definition 2.11 is that the elements of Tw(r) can be viewed
as column-strict fillings of O(w, r) for each r. To do this, the choice of filling order for O(w, r) is crucial.
Let w ∈ Sn and consider D = D(w) and Di,m. Suppose D has z nonempty columns. There is a unique
permutation τ of [n] taking the column indices of D to the column indices of Di,m⊕∅n−z with the following
properties:

• Column c of D is the same as column τ(c) of Di,m.
• If column c and column c′ of D are equal with c < c′, then τ(c) < τ(c′).

Recall that the columns of O(w, r) have the same column labels as D. To read an element T ∈ Tw(r) into
O(w, r), read T left-to-right and fill in top-to-bottom columns τ−1(n), τ−1(n− 1), . . . , τ−1(1) (ignoring any
column indices referring to empty columns).

Lemma 2.12. Let w ∈ Sn have orthodontic sequence (i,m), i = (i1, . . . , il). In the filling order specified
above, the elements of Tw(r) are column-strict fillings of O(w, r) for each 0 ≤ r ≤ l.

Example 2.13. Take again w = 31542 with orthodontic sequence i = (2, 3, 1) and m = (1, 0, 0, 0, 0; 0, 1, 1).
Recall that

D(w) = and Di,m = ,

so τ = 12435 = τ−1. Consider the elements 1 ∈ Tw(3), 1232 ∈ Tw(2), 1242 ∈ Tw(1), and 11342 ∈ Tw(0). The
column filling order of each O(w, r) is given by reading τ−1 in one-line notation right to left: in the indexing
of D(w), fill down column 4, then down column 2, then down column 1. The elements of each set Tw(r) are
column-strict fillings in the corresponding diagrams O(w, r):

i1 = 2 i2 = 3 i3 = 1

ω̃1
1 ⊕ f2 2

4

1

3

ω̃0
2 ⊕ f3 ω̃1

3 ⊕ f1

O(w, 0) O(w, 1) O(w, 2) O(w, 3)

11342 ∈ Tw(0) 1242 ∈ Tw(1) 1232 ∈ Tw(2) 1 ∈ Tw(3)

1 1 11
22

2 3
2

4

Lemma 2.14. Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il). For each 0 ≤ r ≤ l,
O(w, r) has the northwest property.

Definition 2.15. A filling T of a diagram D is called row-flagged if T (p, q) ≤ p for each box (p, q) ∈ D.
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Lemma 2.16. For each 0 ≤ r ≤ l, the elements of Tw(r) are row-flagged fillings of O(w, r).

Proof. Clearly, the singleton Tw(l) is a row-flagged filling of O(w, l). Assume that for some l ≥ s > 0, the
result holds with r = s. We show that the result also holds with r = s − 1. Let T ∈ Tw(s). We must
show that for each u, if fuis(T ) is defined, then ω̃

ms−1

is−1
⊕ fuis(T ) is a row-flagged filling of O(w, s − 1). By

the orthodontia construction, O(w, s) is obtained from O(w, s− 1) by removing the ms−1 columns with no
missing tooth, and then switching rows is + 1 and is.

Since T is a row-flagged filling of O(w, s), each box in O(w, s) containing an entry of T equal to is lies in
a row with index at least is. Any box in O(w, s) containing an entry of T equal to is and lying in row is
of O(w, s) will have row index is + 1 in O(w, s − 1). Any box in O(w, s) containing an entry in T equal to
is and lying in a row d > is of O(w, s) will still have row index d in O(w, s− 1). Then if fuis(T ) is defined,

ω̃
ms−1

is−1
⊕ fuis(T ) will be a row-flagged filling of O(w, s− 1). �

3. Zero-one Schubert polynomials

This section is devoted to giving a sufficient condition on the orthodontic sequence (i,m) of w for the
Schubert polynomial Sw to be zero-one. We give such a condition in Theorem 3.6. We will see in Theorem 4.8
that this condition turns out to also be a necessary condition for Sw to be zero-one.

We start with a less ambitious result:

Proposition 3.1. Let w ∈ Sn and (i,m) be the orthodontic sequence of w. If i = (i1, . . . , il) has distinct
entries, then Sw is zero-one.

Proof. Let T, T ′ ∈ Tw with wt(T ) = wt(T ′). By Definition 2.7, we can find p1, . . . , pl so that

T = ω̃k11 ⊕ · · · ⊕ ω̃knn ⊕ f
p1
i1

(ω̃m1
i1
⊕ · · · ⊕ fplil (ω̃ml

il
) · · · ).

Then if e1, . . . , en denote the standard basis vectors of Rn,

wt(T ) =

n∑
j=1

wt(ω̃
kj
j ) +

l∑
j=1

wt(ω̃
mj

ij
) +

l∑
j=1

pj(eij+1 − eij ).

Similarly, we can find q1, . . . , ql so that

T ′ = ω̃k11 ⊕ · · · ⊕ ω̃knn ⊕ f
q1
i1

(ω̃m1
i1
⊕ · · · ⊕ fqlil (ω̃ml

il
) · · · ),

which implies

wt(T ′) =

n∑
j=1

wt(ω̃
kj
j ) +

l∑
j=1

wt(ω̃
mj

ij
) +

l∑
j=1

qj(eij+1 − eij ).

As wt(T ) = wt(T ′),

0 = wt(T )− wt(T ′) = (p1 − q1)(ei1+1 − ei1) + · · ·+ (pl − ql)(eil+1 − eil).(∗)

Since the vectors {eij+1− eij}lj=1 are independent and i has distinct entries, pj = qj for all j. Thus T = T ′.
This shows that all elements of Tw have distinct weights, so Sw is zero-one. �

We now strengthen Proposition 3.1 to allow i to not have distinct entries. To do this, we will need a
technical definition related to the orthodontic sequence. Recall the construction of the orthodontic sequence
(i,m) of a permutation w ∈ Sn (Definition 2.2) and the intermediate diagrams O(w, r) (Definition 2.11).
Let i = (i1, . . . , il), and define O(w, r)− to be the diagram O(w, r) with all columns of the form [ir] replaced
by empty columns.

Definition 3.2. Define the orthodontic impact function Iw : [l]→ 2[n] by

Iw(j) = {c ∈ [n] | (ij + 1, c) ∈ O(w, j − 1)−}.

That is, Iw(j) is the set of indices of columns of O(w, j − 1)− that are changed when rows ij and ij + 1 are
swapped to form O(w, j).

Definition 3.3. Let w ∈ Sn have orthodontic sequence (i,m), i = (i1, . . . , il). We say w is multiplicity-
free if for any r, s ∈ [l] with r 6= s and ir = is, we have Iw(r) = Iw(s) = {c} for some c ∈ [n].

Example 3.4. If w = 457812693, then
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D(w) = and i = (6, 5, 7, 6, 2, 1, 3, 2).

The only entries of i occurring multiple times are i1 = i4 = 6 and i5 = i8 = 2. Their respective impacts are
Iw(1) = Iw(4) = {3} and Iw(5) = Iw(8) = {6}, so w is multiplicity-free.

The proof of the generalization of Proposition 3.1 will require the following technical lemma. Before
proceeding, recall Lemma 2.12 and Lemma 2.16: for every 0 ≤ j ≤ l, elements of Tw(j) can be viewed
as row-flagged, column-strict fillings of O(w, j) (via the column filling order of O(w, j) specified prior to
Lemma 2.12). Applying ω̃

mj−1

ij−1
⊕ fij to an element of Tw(j) gives an element of Tw(j − 1), a filling of

O(w, j−1). Thus, when we speak below of the application of fij to an element T ∈ Tw(j) “changing an ij to

an ij + 1 in column c”, we specifically mean that when we view T as a filling of O(w, j) and ω̃
mj−1

ij−1
⊕ fij (T )

as a filling of O(w, j − 1), T and ω̃
mj−1

ij−1
⊕ fij (T ) differ (in the stated way) in their entries in column c.

Lemma 3.5. Let w be a multiplicity-free permutation with orthodontic sequence (i,m), i = (i1, . . . , il).
Suppose ir = is with r < s and Iw(r) = Iw(s) = {c}. Then for each j with r ≤ j ≤ s, Iw(j) = {c} and the
application of fij to an element of Tw(j) is either undefined or changes an ij to an ij + 1 in column c.

Proof. We handle first the case that j = r. In the diagram O(w, r − 1), column c is the leftmost column
containing a missing tooth, and ir is the smallest missing tooth in column c. Reading column c of O(w, r−1)
top-to-bottom, one sees a (possibly empty) sequence of boxes in O(w, r−1), followed by a sequence of boxes
not in O(w, r − 1). The sequence of boxes not in O(w, r − 1) has length at least two since ir occurs at least
twice in i, and terminates with the box (ir+1, c) ∈ O(w, r−1). Note that since (ir−1, c), (ir, c) /∈ O(w, r−1),
the northwest property of O(w, r − 1) implies that there can be no box (ir − 1, c′) or (ir, c

′) in O(w, r − 1)
with c′ > c. Note also that since Iw(r) = {c}, we have (ir + 1, c′) /∈ O(w, r − 1) for each c′ > c. Lastly,
observe that for any c′ > c and d > ir + 1, there can be no box (d, c′) ∈ O(w, r− 1). Otherwise there would
be some t ∈ [l] with it = ir and t 6= r such that c′ ∈ Iw(t), violating that w is multiplicity-free.

As a consequence of the previous observations, the largest row index that a column c′ > c of O(w, r − 1)
can contain a box in is ir − 2. In particular, Lemma 2.16 implies that the application of fir to an element
of Tw(r) either is undefined or changes an ir to an ir + 1 in column c. This concludes the case that j = r.

When j = s, an entirely analogous argument works. The only significant difference in the observations
is that when column c of O(w, s − 1) is read top-to-bottom, the (possibly empty) initial sequence of boxes
in O(w, s− 1) is followed by a sequence of boxes not in O(w, s− 1) with length at least 1, ending with the
box (is + 1, c). Consequently, the largest row index that a column c′ > c of O(w, s − 1) can contain a box
in is is − 1. In particular, Lemma 2.16 implies that the application of fis to an element of Tw(s) either is
undefined or changes an is to an is + 1 in column c. This concludes the case that j = s.

Now, let r < j < s. Since Iw(r) = Iw(s) = {c}, we have c ∈ Iw(j). If ij occurs multiple times in i, then
multiplicity-freeness of w implies Iw(j) = {c}. In this case, we can find j′ 6= j with ij = ij′ and apply the
previous argument (with r and s replaced by j and j′) to conclude that the application of fij to an element
of Tw(j) is either undefined or changes an ij to an ij + 1 in column c.

Thus, we assume ij occurs only once in i. Recall that it was shown above that O(w, r − 1) has no boxes
(d, c′) with d > ir and c′ > c. Read top-to-bottom, let column c of O(w, r − 1) have a (possibly empty)
initial sequence of boxes ending with a missing box in row u, so clearly u ≤ ir − 1. Since the first missing
tooth in column c of O(w, r− 1) is in row ir, none of the boxes (u, c), (u+ 1, c), . . . , (ir, c) are in O(w, r− 1),
but (ir + 1, c) ∈ O(w, r− 1). Then, the northwest property implies that there is no box in O(w, r− 1) in any
column c′ > c in any of rows u, u+ 1, . . . , ir. In particular, the largest row index such that a column c′ > c
of O(w, r − 1) can contain a box in is u− 1.
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As r < j < s and Iw(r) = Iw(s) = {c}, we have that c ∈ Iw(j). Also since r < j < s, the leftmost
nonempty column in O(w, j − 1) is column c, and ij ≥ u. Then in O(w, j − 1), the maximum row index
a box in a column c′ > c can have is u − 1. In particular, Iw(j) = {c}, and Lemma 2.16 implies that the
application of fij to an element of Tw(j) is either undefined or changes an ij to an ij + 1 in column c. �

Theorem 3.6. If w is multiplicity-free, then Sw is zero-one.

Proof. Assume wt(T ) = wt(T ′) for some T, T ′ ∈ Tw. If we can show that T = T ′, then we can conclude that
all elements of Tw have distinct weights, so Sw is zero-one. To begin, write

T = ω̃k11 ⊕ · · · ⊕ ω̃knn ⊕ f
p1
i1

(ω̃m1
i1
⊕ · · · ⊕ fplil (ω̃ml

il
) · · · )

and

T ′ = ω̃k11 ⊕ · · · ⊕ ω̃knn ⊕ f
q1
i1

(ω̃m1
i1
⊕ · · · ⊕ fqlil (ω̃ml

il
) · · · ),

for some p1, . . . , pl, q1, . . . , ql. The basic idea of the proof is to show that as T and T ′ are constructed
step-by-step from ω̃ml

il
, the resulting intermediate tableaux are intermittently equal. At termination of the

construction, this will imply that T = T ′.
By the expansion (∗) of wt(T )−wt(T ′) used in the proof of Proposition 3.1, we observe that pu = qu for

all u such that iu occurs only once in i. Let s be the largest index such that ps 6= qs. Suppose Iw(s) = {c}.
Let r1 be the smallest index such that ir1 occurs multiple times in i and Iw(r1) = {c}. We know r1 < s,
because (∗) implies that ps′ 6= qs′ for another s′ < s with is′ = is, and by multiplicity-freeness Iw(s′) = {c}.
We wish to find an interval [r, s] ⊆ [r1, s] such that r < s and the following two conditions hold:

(i) If v ≥ r and iv occurs multiple times in i, then any other v′ with iv = iv′ will satisfy v′ ≥ r.
(ii) For every j with r < j < s and ij occurring only once in i, there are t and u with r ≤ t < j < u ≤ s

such that it = iu.

We first show that (i) holds for [r1, s]. Note that if iv occurs multiple times in i and r1 ≤ v ≤ s, then
it must be that Iw(v) = {c} by the fact that the orthodontia construction records all missing teeth needed
to eliminate one column before moving on to the next column. If iv′ = iv, then Iw(v′) = {c} also, by
multiplicity-freeness of w. The choice of r1 implies r1 ≤ v′. If iv occurs multiple times in i with s < v and
Iw(v) = {c}, then the choice of r1 again implies that r1 ≤ v′ for any iv′ = iv. If iv occurs multiple times
in i with s < v and Iw(v) 6= {c}, then the orthodontia construction implies that any v′ with iv = iv′ must
satisfy s < v′. In particular, r1 < v′ as needed. Thus, (i) holds for [r1, s]. If [r1, s] also satisfies (ii), then we
are done.

Otherwise, assume [r1, s] does not satisfy (ii). Then there is some j with r1 < j < s such that ij occurs
only once in i and there are no t and u with r1 ≤ t < j < u ≤ s and it = iu. Consequently for every pair
iu = it with r1 ≤ t < u ≤ s, it must be that either t < u < j or j < t < u. Let r2 be the smallest index
such that j < r2 and ir2 occurs multiple times in i. By the choice of j, it is clear that the interval [r2, s] still
satisfies (i). If [r2, s] also satisfies (ii), then we are done.

Otherwise, [r2, s] satisfies (i) but not (ii), and we can argue exactly as in the case of [r1, s] to find an r3

such that r2 < r3 < s and [r3, s] satisfies (i). Continue working in this fashion. We show that this process
terminates with an interval [r, s] satisfying r < s, (i), and (ii).

As mentioned above, there exists s′ < s such that is′ = is. Let s′ be the maximal index less than s with
this property. Since all of the intervals [r∗, s] will satisfy (i), it follows that r1 < r2 < · · · ≤ s′. At worst, the
process will terminate after finitely many steps with the interval [s′, s]. The interval [s′, s] will then satisfy
(i) since the process reached it, and will trivially satisfy (ii) since is = is′ .

Hence, we can assume that we have found an interval [r, s] satisfying r < s, (i), and (ii). Consider the
tableaux

Tr = ω̃
mr−1

ir−1
⊕ fprir (ω̃mr

ir
⊕ · · · ⊕ fplil (ω̃ml

il
) · · · ), Ts = ω̃ms

is
⊕ fps+1

is+1
(ω̃
ms+1

is+1
⊕ · · · ⊕ fplil (ω̃ml

il
) · · · ),

T ′r = ω̃
mr−1

ir−1
⊕ fqrir (ω̃mr

ir
⊕ · · · ⊕ fqlil (ω̃ml

il
) · · · ), T ′s = ω̃ms

is
⊕ fqs+1

is+1
(ω̃
ms+1

is+1
⊕ · · · ⊕ fqlil (ω̃ml

il
) · · · ).

By definition, Tr, T
′
r ∈ Tw(r − 1), so we can view Tr and T ′r as fillings of O(w, r − 1). Similarly, Ts, T

′
s ∈

Tw(s), so we can view Ts and T ′s as fillings of O(w, s). Since we chose s to be the largest index such that
ps 6= qs, it follows that Ts = T ′s. By property (i) of [r, s], iu 6= iv for any u < r ≤ v. Hence, it must be
that wt(Tr) = wt(T ′r). Finally, property (ii) of [r, s] allows us to apply Lemma 3.5 and conclude that for any
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ar, ar+1, . . . , as ≥ 0, when ω̃
mr−1

ir−1
⊕farir (ω̃irmr

⊕· · ·⊕ ω̃ms−1

is−1
fasis (—) · · · ) is applied to an element of Tw(s), only

the entries in column c are affected by the root operators farir , . . . , f
as
is

. Since

Tr = ω̃
mr−1

ir−1
⊕ fprir (ω̃irmr

⊕ · · · ⊕ ω̃ms−1

is−1
fpsis (Ts) · · · ) and T ′r = ω̃

mr−1

ir−1
⊕ fqrir (ω̃irmr

⊕ · · · ⊕ ω̃ms−1

is−1
fqsis (T ′s) · · · ),

Tr and T ′r must coincide outside of column c. Since we already deduced that wt(Tr) = wt(T ′r), it follows
that column c of Tr and T ′r have the same weight. By column-strictness of Tr and T ′r, column c of Tr and
T ′r must coincide, so Tr = T ′r.

To complete the proof, let ŝ be the largest index ŝ < r such that pŝ 6= qŝ. If no such index exists,
then T = T ′. Otherwise, set r̂1 to be the smallest index such that ir̂1 occurs multiple times in i and
Iw(r̂1) = Iw(ŝ). We have r̂1 < ŝ because some other ŝ′ distinct from ŝ such that pŝ′ 6= qŝ′ and iŝ′ = iŝ
must exist as before, and ŝ′ is also less than r by property (i) of [r, s]. Use the previous algorithm to find
an interval [r̂, ŝ] ⊆ [r̂1, ŝ] satisfying r̂ < ŝ, (i), and (ii). Construct Tr̂, T

′
r̂, Tŝ, T

′
ŝ, and argue exactly as in the

case of [r, s] that Tr̂ = T ′r̂.
Continuing in this manner for a finite number of steps will show that T = T ′. �

As we will show in Theorem 4.8, it is not only sufficient but also necessary that w be multiplicity-free for
the Schubert polynomial Sw to be zero-one.

4. Pattern avoidance conditions for multiplicity-freeness

This section is devoted to showing that w being multiplicity-free is equivalent to a certain pattern avoid-
ance condition. We then prove our full characterization of zero-one Schubert polynomials.

We start with several definitions.

Definition 4.1. We say a Rothe diagram D = D(w) contains an instance of configuration A if there are
r1, c1, r2, c2, r3 such that 1 ≤ r3 < r1 < r2, 1 < c1 < c2, (r1, c1), (r2, c2) ∈ D, (r1, c2) /∈ D, and wr3 < c1.

Definition 4.2. We say a Rothe diagram D = D(w) contains an instance of configuration B if there are
r1, c1, r2, c2, r3, r4 such that 1 ≤ r4 6= r3 < r1 < r2, 2 < c1 < c2, (r1, c1), (r1, c2), (r2, c2) ∈ D, wr3 < c1, and
wr4 < c2.

Definition 4.3. We say a Rothe diagram D = D(w) contains an instance of configuration B′ if there are
r1, c1, r2, c2, r3, r4 such that 1 ≤ r4 < r3 < r1 < r2, 2 < c1 < c2, (r1, c1), (r1, c2), (r2, c1) ∈ D, wr3 < c1, and
wr4 < c1.

Given a Rothe diagram D(w), we will call a tuple (r1, c1, r2, c2, r3) meeting the conditions of Definition 4.1
an instance of configuration A in D(w). Similarly, we will call a tuple (r1, c1, r2, c2, r3, r4) meeting the
conditions of Definition 4.2 (resp. 4.3) an instance of configuration B (resp. B′) in D(w).

•

•

•

•

•

c1 c2

r3

r1

r2

A

•

•

•

•

•

•

c1 c2
r4

r3

r1

r2

B

•

•

•

•

•

c1 c2

r4

r3

r1

r2

B′

Figure 1. Examples of instances of the configurations A, B, and B′ in Rothe diagrams.
Both the hooks removed from the n×n grid to form each Rothe diagram and the remaining
boxes are shown.

Theorem 4.4. If w ∈ Sn is a permutation such that D(w) does not contain any instance of configuration
A, B, or B′, then w is multiplicity-free.
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•

•

•

•

•

D(12543)

•

•

•

•

•

D(13254)

•

•

•

•

•

D(13524)

•

•

•

•

•

D(13542)

•

•

•

•

•

D(21543)

•

•

•

•

•

•

D(125364)

•

•

•

•

•

•

D(125634)

•

•

•

•

•

•

D(215364)

•

•

•

•

•

•

D(215634)

•

•

•

•

•

•

D(315264)

•

•

•

•

•

•

D(315624)

•

•

•

•

•

•

D(315642)

Figure 2. The Rothe diagrams of the twelve multiplicitous patterns.

Theorem 4.8 will also imply the converse of this theorem.

Proof. We prove the contrapositive. Assume w is not multiplicity-free and let (i,m) be the orthodontic
sequence of w. Then, we can find entries ip1 = ip2 of i with p1 < p2 such that either Iw(p1) 6= Iw(p2), or
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Iw(p1) = Iw(p2) with |Iw(p1)| > 1. We show that D(w) must contain at least one instance of configuration
A, B, or B′.
Case 1: Assume that Iw(p1) * Iw(p2) and Iw(p2) * Iw(p1). Take c1 ∈ Iw(p1)\Iw(p2) and c2 ∈
Iw(p2)\Iw(p1). We show that columns c1 and c2 of D(w) contain an instance of configuration A.

In step p1 of the orthodontia on D(w), a box in column c1 is moved (by the missing tooth ip1) to row ip1 .
Let this box originally be in row r1 of D(w). Analogously, let the box in column c2 moved to row ip2 in step
p2 of the orthodontia (by the missing tooth ip2) originally be in row r2 of D(w). Observe that r1 < r2. If
c2 < c1, then the northwest property would imply that (r1, c2) ∈ D(w), contradicting that c2 /∈ Iw(p1). Thus
c1 < c2. Since c2 /∈ Iw(p1), (r1, c2) /∈ D(w). Lastly, since the box (r1, c1) is moved by the orthodontia, there
is some box (r3, c1) /∈ D(w) with r3 < r1. Consequently, wr3 < c1. Thus, (r1, c1, r2, c2, r3) is an instance of
configuration A.
Case 2: Assume Iw(p2) is a proper subset of Iw(p1). Let c1 = max(Iw(p2)) and c2 = min(Iw(p1)\Iw(p2)).
Let the box in column c1 moved to row ip1 = ip2 in step p1 (resp. p2) of the orthodontia originally be in row
r1 (resp. r2) of D(w). Observe that r1 < r2.

Assume first that c1 < c2. Since c1 ∈ Iw(p1) ∩ Iw(p2), the boxes (r1, c1) and (r2, c2) both move
weakly above row ip1 in the orthodontia. Then, we can find indices r3, r4 with r4 < r3 < r1 such that
(r3, c1), (r4, c1) /∈ D(w). Hence, wr3 < c1 and wr4 < c1, so (r1, c1, r2, c2, r3, r4) is an instance of configuration
B′.

Otherwise c1 > c2. Since the box (r1, c2) is moved by the orthodontia, we can find r3 < r1 with
(r3, c2) /∈ D(w). Then wr3 < c2. As we are assuming c2 < c1, (r3, c1) /∈ D(w) also. Since the boxes (r1, c1)
and (r2, c1) in D(w) are moved weakly above row ip1 by the orthodontia, we can find some r4 < r1 with
r4 6= r3 such that (r4, c1) /∈ D(w). Then, wr4 < c1, so (r1, c2, r2, c1, r3, r4) is an instance of configuration B.
Case 3: Assume Iw(p1) is a proper subset of Iw(p2). This case is handled similarly to Case 2. Let
c1 = max(Iw(p1)) and c2 = min(Iw(p2)\Iw(p1)). Let the box in column c1 moved to row ip1 = ip2 in step
p1 (resp. p2) of the orthodontia originally be in row r1 (resp. r2) of D(w). Observe that r1 < r2.

Assume c1 < c2. Since the boxes (r1, c1) and (r2, c1) of D(w) are moved weakly above row ip1 by the
orthodontia, we can find indices r3, r4 with r4 < r3 < r1 such that (r3, c1), (r4, c1) /∈ D(w). Then, wr3 < c1
and wr4 < c1. Since c2 /∈ Iw(p1), (r1, c2) /∈ D(w). Then, (r1, c1, r2, c2, r3) is an instance of configuration A.

Otherwise c1 > c2. As c2 /∈ Iw(p1), (r1, c2) /∈ D(w). Since (r2, c2), (r1, c1) ∈ D(w), this is a contradiction
of the northwest property of D(w).
Case 4: Assume Iw(p1) = Iw(p2) is not a singleton. Let c1, c2 ∈ Iw(p1) with c1 < c2. Let the box in column
c1 moved to row ip1 = ip2 in step p1 (resp. p2) of the orthodontia originally be in row r1 (resp. r2) of D(w).
Observe that r1 < r2. Since the boxes (r1, c1) and (r2, c1) in D(w) are moved weakly above row ip1 by the
orthodontia, we can find indices r3, r4 with r4 < r3 < r1 such that (r3, c1), (r4, c1) /∈ D(w). Then, wr3 < c1
and wr4 < c1. Thus, (r1, c1, r2, c2, r3, r4) is an instance of configuration B′. �

We now relate multiplicity-freeness to pattern avoidance of permutations. We begin by clarifying our
pattern avoidance terminology. A pattern σ of length n is a permutation in Sn. The length n is a crucial
part of the data of a pattern; we make no identifications between patterns of different lengths, unlike what is
usual when handling permutations in the Schubert calculus. A permutation w contains σ if w has n entries
wj1 , . . . , wjn with j1 < j2 < · · · < jn that are in the same relative order as σ1, σ2, . . . , σn. In this case, the
indices j1 < j2 < · · · < jn are called a realization of σ in w. We say that w avoids the pattern σ if w does
not contain σ. To illustrate the dependence of these definitions on n, note that w = 154623 contains the
pattern 132, but not the pattern 132456.

The following easy lemma gives a diagrammatic interpretation of pattern avoidance.

Lemma 4.5. Let w ∈ Sn be a permutation and σ a pattern of length m contained in w. Choose a realization
j1 < j2 < · · · < jm of σ in w. Then D(σ) is obtained from D(w) by deleting the rows [n]\{j1, . . . , jm} and
the columns [n]\{wj1 , . . . , wjm}, and reindexing the remaining rows and columns by [m], preserving their
order.

Definition 4.6. The multiplicitous patterns are those in the set

MPatt = {12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, 315642}.

Theorem 4.7. Let w ∈ Sn. Then D(w) does not contain any instance of configuration A, B, or B′ if and
only if w avoids all of the multiplicitous patterns.
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Proof. It is easy to check (see Figure 2) that each of the twelve multiplicitous patterns contains an instance
of configuration A, B, or B′. Lemma 4.5 implies that if w contains σ ∈ MPatt, then deleting some rows and
columns from D(w) yields D(σ). Since D(σ) contains at least one instance of configuration A, B, or B′, so
does D(w).

Conversely, assume D(w) contains at least one instance of configuration A, B, or B′. We must show that w
contains some multiplicitous pattern. Let τ1, τ2, . . . , τn be the n patterns of length n−1 contained in w; say τ j

is realized in w by forgetting wj . Without loss of generality, we may assume none of D(τ1), . . . , D(τn) contain
an instance of configuration A, B, or B′: if D(τ j) does contain an instance of one of these configurations,
replace w by τ j and iterate.

For each j, D(τ j) is obtained from D(w) by deleting row j and column wj . Since D(τ j) does not contain
any instance of any of our three configurations, each cross {(j, q) | (j, q) ∈ D(w)}∪{(p, wj) | (p, wj) ∈ D(w)}
intersects each instance of every configuration contained in D(w). However, an instance of configuration
A involves only three rows and two columns, and an instance of B or B′ involves only four rows and two
columns. Thus, it must be that w ∈ Sn for some n ≤ 6. It can be checked by exhaustion that the only
permutations in Sn with n ≤ 6 that are minimal (with respect to pattern avoidance) among those whose
Rothe diagrams contain an instance of configuration A, B, or B′ are the twelve multiplicitous patterns. �

We are now ready to state our full characterization of zero-one Schubert polynomials, and most of the
elements of the proof are at hand.

Theorem 4.8. The following are equivalent:

(i) The Schubert polynomial Sw is zero-one.
(ii) The permutation w is multiplicity-free,

(iii) The Rothe diagram D(w) does not contain any instance of configuration A, B, or B′,
(iv) The permutation w avoids the multiplicitous patterns, namely 12543, 13254, 13524, 13542, 21543,

125364, 125634, 215364, 215634, 315264, 315624, and 315642.

Proof. Theorem 3.6 shows (ii)⇒ (i). Theorem 4.4 shows (iii)⇒ (ii). Theorem 4.7 shows (iii)⇔ (iv). The
implication (i)⇒ (iv) will follow immediately from Corollary 5.9, since the Schubert polynomials associated
to the permutations 12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624,
and 315642 each have a coefficient equal to 2. We prove Corollary 5.9 in the next section. �

5. A coefficient-wise inequality for dual characters of flagged Weyl modules of
diagrams

The aim of this section is to prove a generalization of Theorem 1.2, namely, Theorem 5.8. We now explain
the necessary background and terminology for Theorem 5.8 and its proof.

Let G = GL(n,C) be the group of n×n invertible matrices over C and B be the subgroup of G consisting
of the n × n upper-triangular matrices. The flagged Weyl module is a representation MD of B associated
to a diagram D. The dual character of MD has been shown in certain cases to be a Schubert polynomial
[8] or a key polynomial [16]. We will use the construction of MD in terms of determinants given in [13].

Denote by Y the n× n matrix with indeterminates yij in the upper-triangular positions i ≤ j and zeros
elsewhere. Let C[Y ] be the polynomial ring in the indeterminates {yij}i≤j . Note that B acts on C[Y ] on
the right via left translation: if f(Y ) ∈ C[Y ], then a matrix b ∈ B acts on f by f(Y ) · b = f(b−1Y ). For any
R,S ⊆ [n], let Y RS be the submatrix of Y obtained by restricting to rows R and columns S.

For R,S ⊆ [n], we say R ≤ S if #R = #S and the kth least element of R does not exceed the kth
least element of S for each k. For any diagrams C = (C1, . . . , Cn) and D = (D1, . . . , Dn), we say C ≤ D if
Cj ≤ Dj for all j ∈ [n].

Definition 5.1. For a diagram D = (D1, . . . , Dn), the flagged Weyl module MD is defined by

MD = SpanC


n∏
j=1

det
(
Y
Cj

Dj

) ∣∣∣∣∣∣ C ≤ D
 .

MD is a B-module with the action inherited from the action of B on C[Y ].
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Note that since Y is upper-triangular, the condition C ≤ D is technically unnecessary since det
(
Y
Cj

Dj

)
= 0

unless Cj ≤ Dj . Conversely, if Cj ≤ Dj , then det
(
Y
Cj

Dj

)
6= 0.

For any B-module N , the character of N is defined by char(N)(x1, . . . , xn) = tr (X : N → N) where X
is the diagonal matrix diag(x1, x2, . . . , xn) with diagonal entries x1, . . . , xn, and X is viewed as a linear map
from N to N via the B-action. Define the dual character of N to be the character of the dual module N∗:

char∗(N)(x1, . . . , xn) = tr (X : N∗ → N∗)

= char(N)(x−1
1 , . . . , x−1

n ).

A special case of dual characters of flagged Weyl modules of diagrams are Schubert polynomials:

Theorem 5.2 ([8]). Let w be a permutation, D(w) be the Rothe diagram of w, and MD(w) be the associated
flagged Weyl module. Then,

Sw = char∗MD(w).

Another special family of dual characters of flagged Weyl modules of diagrams, for so-called skyline
diagrams of compositions, are key polynomials [3].

Definition 5.3. For a diagram D ⊆ [n]× [n], let χD = χD(x1, . . . , xn) be the dual character

χD = char∗MD.

We now work towards proving Theorem 5.8. We start by reviewing some material from [4] for the reader’s
convenience. We then derive several lemmas that simplify the proof of Theorem 5.8.

Theorem 5.4 (cf. [4, Theorem 7]). For any diagram D ⊆ [n] × [n], the monomials appearing in χD are
exactly 

n∏
j=1

∏
i∈Cj

xi

∣∣∣∣∣∣ C ≤ D
 .

Proof. (Following that of [4, Theorem 7]) Denote by X the diagonal matrix diag(x1, x2, . . . , xn). First, note
that yij is an eigenvector of X with eigenvalue x−1

i . Take a diagram C = (C1, . . . , Cn) with C ≤ D. Then,

the element
∏n
j=1 det

(
Y
Cj

Dj

)
is an eigenvector of X with eigenvalue

∏n
j=1

∏
i∈Cj

x−1
i . Since MD is spanned

by elements
∏n
j=1 det

(
Y
Cj

Dj

)
and each is an eigenvector of X, the monomials appearing in the dual character

χD are exactly
{∏n

j=1

∏
i∈Cj

xi

∣∣∣ C ≤ D}. �

Corollary 5.5. Let D ⊆ [n]× [n] be a diagram. Fix any diagram C(1) ≤ D and set

m =

n∏
j=1

∏
i∈C(1)

j

xi.

Let C(1), . . . , C(r) be all the diagrams C such that C ≤ D and
∏n
j=1

∏
i∈Cj

xi = m. Then, the coefficient of

m in χD is equal to

dim

SpanC


n∏
j=1

det

(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ i ∈ [r]


 .

Proof. The coefficient of m in χD equals the dimension of the eigenspace of m−1 in MD (m−1 occurs here
instead of m since χD is the dual character of MD). This eigenspace equals

SpanC


n∏
j=1

det

(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ i ∈ [r]

 ,

so the result follows. �
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The understanding of the coefficients of the monomials of χD given in Corollary 5.5 is key to our proof of
Theorem 5.8. We set up some notation now.

Given diagrams C,D ⊆ [n]× [n] and k, l ∈ [n], let Ĉ and D̂ denote the diagrams obtained from C and D

by removing any boxes in row k or column l. Fix a diagram D. For each diagram Ĉ, let

Ĉaug = Ĉ ∪ {(k, i) | (k, i) ∈ D} ∪ {(i, l) | (i, l) ∈ D} ⊆ [n]× [n].

The following lemma is immediate and its proof is left to the reader.

Lemma 5.6. Let C,D ⊆ [n]× [n] be diagrams and k, l ∈ [n]. If Ĉ ≤ D̂, then Ĉaug ≤ D. In particular, every

diagram C ′ ≤ D̂ with no boxes in row k can be obtained from some diagram C ≤ D by removing any boxes
in row k or column l from C.

The following result is our key lemma. For a polynomial f ∈ Z[x1, . . . , xn] and a monomial m, let [m]f
denote the coefficient of m in f .

Lemma 5.7. Fix a diagram D and k, l ∈ [n]. Let {Ĉ(i)}i∈[m] be a set of diagrams with Ĉ(i) ≤ D̂ for each

i, and denote Ĉ
(i)
aug by C(i) for i ∈ [m]. If the polynomials

∏
j∈[n]

det

(
Y
C

(i)
j

Dj

)
i∈[m]

are linearly dependent,

then so are the polynomials

 ∏
j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
i∈[m]

.

Proof. We are given that ∑
i∈[m]

ci
∏
j∈[n]

det

(
Y
C

(i)
j

Dj

)
= 0(2)

for some constants (ci)i∈[m] ∈ Cm not all zero. Since C(i) = Ĉ
(i)
aug for Ĉ(i) ≤ D̂ we have that C

(i)
l = Dl for

every i ∈ [m]. Thus, (2) can be rewritten as

det
(
Y Dl

Dl

)∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

) = 0.(3)

However, since det
(
Y Dl

Dl

)
6= 0, we conclude that

∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
= 0.(4)

First consider the case that the only boxes of D in row k or column l are those in Dl. If this is the case
then

∏
j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
=

∏
j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
(5)

for each i ∈ [m]. Therefore,

∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
=
∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
.(6)

Combining (4) and (6) we obtain that the polynomials

{∏
j∈[n]\{l} det

(
Y
Ĉ

(i)
j

D̂j

)}
i∈[m]

are linearly depen-

dent, as desired.
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Now, suppose that there are boxes of D in row k that are not in Dl. Let j1 < . . . < jp be all indices j 6= l

such that Dj = D̂j ∪ {k}. Then also C
(i)
jq

= Ĉ
(i)
jq
∪ {k} for each i ∈ [m] and q ∈ [p]. Let us consider the

left-hand side of (4) as a polynomial in ykk. Then, (4) implies that the coefficient of ypkk is 0:

[ypkk]
∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
= 0.(7)

However,

[ypkk]
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
=

∏
j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
,(8)

as is seen by Laplace expansion on the kth row, and therefore

[ypkk]
∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
C

(i)
j

Dj

)
=
∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
.(9)

Thus, (7) and (9) imply that

∑
i∈[m]

ci
∏

j∈[n]\{l}

det

(
Y
Ĉ

(i)
j

D̂j

)
= 0,(10)

as desired. �

We now state and prove Theorem 1.2 and its generalization Theorem 5.8.

Theorem 5.8. Fix a diagram D ⊆ [n] × [n] and let D̂ be the diagram obtained from D by removing any
boxes in row k or column l. Then

χD(x1, . . . , xn) = M(x1, . . . , xn)χD̂(x1, . . . , xk−1, 0, xk+1, . . . , xn) + F (x1, . . . , xn),

where F (x1, . . . , xn) ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =

 ∏
(k,i)∈D

xk

 ∏
(i,l)∈D

xi

 .

Proof. Let M = M(x1, . . . , xn). We must show that [Mm]χD ≥ [m]χD̂ for each monomial m of χD̂ not

divisible by xk. Let C(1), . . . , C(r) be all the diagrams C such that C ≤ D and
∏n
j=1

∏
i∈Cj

xi = Mm. By

Corollary 5.5,

[Mm]χD = dim

SpanC


n∏
j=1

det

(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ i ∈ [r]


 .

Let 1, 2, . . . , q be the indices of the distinct diagrams among Ĉ(1), . . . , Ĉ(r). By Lemma 5.6, Ĉ(1), . . . , Ĉ(q)

are all the diagrams C such that C ≤ D̂ and
∏n
j=1

∏
i∈Cj

xi = m, as no diagram with this dual eigenvalue

can have a box in row k. So Corollary 5.5 implies that

[m]χD̂ = dim

SpanC


n∏
j=1

det

(
Y
Ĉ

(i)
j

D̂j

) ∣∣∣∣∣∣ i ∈ [q]


 .

Finally, Lemma 5.7 implies that

dim

SpanC


n∏
j=1

det

(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ i ∈ [r]


 ≥ dim

SpanC


n∏
j=1

det

(
Y
Ĉ

(i)
j

D̂j

) ∣∣∣∣∣∣ i ∈ [q]


 ,

so [Mm]χD ≥ [m]χD̂ for each monomial m of χD̂ not divisible by xk; that is

χD(x1, . . . , xn)−MχD̂(x1, . . . , xk−1, 0, xk+1, . . . , xn) ∈ Z≥0[x1, . . . , xn].
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�

Theorem 1.2. Fix w ∈ Sn and let σ ∈ Sn−1 be the pattern with Rothe diagram D(σ) obtained by removing
row k and column wk from D(w). Then

Sw(x1, . . . , xn) = M(x1, . . . , xn)Sσ(x1, . . . , x̂k, . . . , xn) + F (x1, . . . , xn),(11)

where F ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =

 ∏
(k,i)∈D(w)

xk

 ∏
(i,wk)∈D(w)

xi

 .

Proof. Specialize Theorem 5.8 to the case that D is a Rothe diagram D(w) and l = wk. The dropping of xk
is due to reindexing, since the entirety of row k and column wk of D(w) are removed from to obtain D(σ),
not just the boxes in row k and column wk. �

Corollary 5.9. Fix w ∈ Sn and let σ ∈ Sm be any pattern contained in w. If k is a coefficient of a monomial
in Sσ, then Sw contains a monomial with coefficient at least k.

Proof. Immediate consequence of repeated applications of Theorem 1.2. �
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[10] A. Lascoux and M.-P. Schützenberger. Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math., 294(13):447–450,
1982.

[11] A. Lascoux and M.-P. Schützenberger. Keys and standard bases. IMA, Math. Appl., 19:125–144, 1990.

[12] C. Lenart. A unified approach to combinatorial formulas for Schubert polynomials. J. Algebraic Combin., 20(3):263–299,
2004.

[13] P. Magyar. Schubert polynomials and Bott-Samelson varieties. Comment. Math. Helv., 73(4):603–636, 1998.

[14] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy loci, volume 6 of SMF/AMS Texts and Monographs.
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