89 research outputs found

    Extravesicular TIMP-1 is a non-invasive independent prognostic marker and potential therapeutic target in colorectal liver metastases

    Get PDF
    Molecular reprogramming of stromal microarchitecture by tumour-derived extracellular vesicles (EVs) is proposed to favour pre-metastatic niche formation. We elucidated the role of extravesicular tissue inhibitor of matrix metalloproteinase-1 (TIMP1EV) in pro-invasive extracellular matrix (ECM) remodelling of the liver microenvironment to aid tumour progression in colorectal cancer (CRC). Immunohistochemistry analysis revealed a high expression of stromal TIMP1 in the invasion front that was associated with poor progression-free survival in patients with colorectal liver metastases. Molecular analysis identified TIMP1EV enrichment in CRC-EVs as a major factor in the induction of TIMP1 upregulation in recipient fibroblasts. Mechanistically, we proved that EV-mediated TIMP1 upregulation in recipient fibroblasts induced ECM remodelling. This effect was recapitulated by human serum-derived EVs providing strong evidence that CRC release active EVs into the blood circulation of patients for the horizontal transfer of malignant traits to recipient cells. Moreover, EV-associated TIMP1 binds to HSP90AA, a heat-shock protein, and the inhibition of HSP90AA on human-derived serum EVs attenuates TIMP1EV-mediated ECM remodelling, rendering EV-associated TIMP1 a potential therapeutic target. Eventually, in accordance with REMARK guidelines, we demonstrated in three independent cohorts that EV-bound TIMP1 is a robust circulating biomarker for a non-invasive, preoperative risk stratification in patients with colorectal liver metastases

    Plasma extracellular vesicle messenger RNA profiling identifies prognostic EV signature for non-invasive risk stratification for survival prediction of patients with pancreatic ductal adenocarcinoma

    Get PDF
    Background The prognosis of pancreatic ductal adenocarcinoma (PDAC) is one of the most dismal of all cancers and the median survival of PDAC patients is only 6–8 months after diagnosis. While decades of research effort have been focused on early diagnosis and understanding of molecular mechanisms, few clinically useful markers have been universally applied. To improve the treatment and management of PDAC, it is equally relevant to identify prognostic factors for optimal therapeutic decision-making and patient survival. Compelling evidence have suggested the potential use of extracellular vesicles (EVs) as non-invasive biomarkers for PDAC. The aim of this study was thus to identify non-invasive plasma-based EV biomarkers for the prediction of PDAC patient survival after surgery. Methods Plasma EVs were isolated from a total of 258 PDAC patients divided into three independent cohorts (discovery, training and validation). RNA sequencing was first employed to identify differentially-expressed EV mRNA candidates from the discovery cohort (n = 65) by DESeq2 tool. The candidates were tested in a training cohort (n = 91) by digital droplet polymerase chain reaction (ddPCR). Cox regression models and Kaplan–Meier analyses were used to build an EV signature which was subsequently validated on a multicenter cohort (n = 83) by ddPCR. Results Transcriptomic profiling of plasma EVs revealed differentially-expressed mRNAs between long-term and short-term PDAC survivors, which led to 10 of the top-ranked candidate EV mRNAs being tested on an independent training cohort with ddPCR. The results of ddPCR enabled an establishment of a novel prognostic EV mRNA signature consisting of PPP1R12A, SCN7A and SGCD for risk stratification of PDAC patients. Based on the EV mRNA signature, PDAC patients with high risk displayed reduced overall survival (OS) rates compared to those with low risk in the training cohort (p = 0.014), which was successfully validated on another independent cohort (p = 0.024). Interestingly, the combination of our signature and tumour stage yielded a superior prognostic performance (p = 0.008) over the signature (p = 0.022) or tumour stage (p = 0.016) alone. It is noteworthy that the EV mRNA signature was demonstrated to be an independent unfavourable predictor for PDAC prognosis. Conclusion This study provides a novel and non-invasive prognostic EV mRNA signature for risk stratification and survival prediction of PDAC patients

    Age differences in gain- and loss-motivated attention

    Get PDF
    Adaptive gain theory (Aston-Jones & Cohen, 2005) suggests that the phasic release of norepinephrine (NE) to cortical areas reflects changes in the utility of ongoing tasks. In the context of aging, this theory raises interesting questions, given that the motivations of older adults differ from those of younger adults. According to socioemotional selectivity theory (Carstensen, Isaacowitz, & Charles, 1999), aging is associated with greater emphasis on emotion-regulation goals, leading older adults to prioritize positive over negative information. This suggests that the phasic release of NE in response to threatening stimuli may be diminished in older adults. In the present study, younger adults (aged 18–34 years) and older adults (60–82 years) completed the Attention Network Test (ANT), modified to include an incentive manipulation. A behavioral index of attentional alerting served as a marker of phasic arousal. For younger adults, this marker correlated with the effect of both gain and loss incentives on performance. For older adults, in contrast, the correlation between phasic arousal and incentive sensitivity held for gain incentives only. These findings suggest that the enlistment of phasic NE activity may be specific to approach-oriented motivation in older adults

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Influence of Standard Laboratory Procedures on Measures of Erythrocyte Damage

    Full text link
    The ability to characterize the mechanical properties of erythrocytes is important in clinical and research contexts: to diagnose and monitor hematologic disorders, as well as to optimize the design of cardiovascular implants and blood circulating devices with respect to blood damage. However, investigation of red blood cell (RBC) properties generally involves preparatory and processing steps. Even though these impose mechanical stresses on cells, little is known about their impact on the final measurement results. In this study, we investigated the effect of centrifuging, vortexing, pipetting, and high pressures on several markers of mechanical blood damage and RBC membrane properties. Using human venous blood, we analyzed erythrocyte damage by measuring free hemoglobin, phosphatidylserine exposure by flow cytometry, RBC deformability by ektacytometry and the parameters of a complete blood count. We observed increased levels of free hemoglobin for all tested procedures. The release of hemoglobin into plasma depended significantly on the level of stress. Elevated pressures and centrifuging also altered mean cell volume (MCV) and mean corpuscular hemoglobin (MCH), suggesting changes in erythrocyte population, and membrane properties. Our results show that the effects of blood handling can significantly influence erythrocyte damage metrics. Careful quantification of this influence as well as other unwanted secondary effects should thus be included in experimental protocols and accounted for in clinical laboratories.ISSN:1664-042

    Seminal Plasma Initiates a Neisseria gonorrhoeae Transmission State

    No full text
    Niche-restricted pathogens are evolutionarily linked with the specific biological fluids that are encountered during infection. Neisseria gonorrhoeae causes the genital infection gonorrhea and is exposed to seminal fluid during sexual transmission. Treatment of N. gonorrhoeae with seminal plasma or purified semen proteins lactoferrin, serum albumin, and prostate-specific antigen each facilitated type IV pilus-mediated twitching motility of the bacterium. Motility in the presence of seminal plasma was characterized by high velocity and low directional persistence. In addition, infection of epithelial cells with N. gonorrhoeae in the presence of seminal plasma resulted in enhanced microcolony formation. Close association of multiple pili in the form of bundles was also disrupted after seminal plasma treatment leading to an increase in the number of single pilus filaments on the bacterial surface. Thus, exposure of N. gonorrhoeae to seminal plasma is proposed to alter bacterial motility and aggregation characteristics to influence the processes of transmission and colonization. IMPORTANCE There are greater than 100 million estimated new cases of gonorrhea annually worldwide. Research characterizing the mechanisms of pathogenesis and transmission of Neisseria gonorrhoeae is important for developing new prevention strategies, since antibiotic resistance of the organism is becoming increasingly prevalent. Our work identifies seminal plasma as a mediator of N. gonorrhoeae twitching motility and microcolony formation through functional modification of the type IV pilus. These findings provide insight into motility dynamics and epithelial cell colonization under conditions that are relevant to sexual transmission. Type IV pili are common virulence factors with diverse functions among bacterial pathogens, and this work identifies interactions between type IV pili and the host environment. Finally, this work illustrates the importance of the host environment and niche-specific fluids on microbial pathogenesis
    corecore