34 research outputs found

    Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    Full text link
    This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estimated, obtaining a maximum improvement in the ICE mechanical power and an expander shaft power of 3.7% and 1.83 kW respectively. A total of 28 steady-state operating points were measured to evaluate performance of the swash-plate expander prototype. Operating parameters of the expander, such as expander speed and expansion ratio, were shifted. The objective of the tests is to master the system and understand physical parameters influence. The importance of each parameter was analyzed by fixing all the parameters, changing each time one specific value. In these sensitivity studies, maximum ideal and real Rankine efficiency value of 19% and 6% were obtained respectively.This work is part of a research project called "Evaluation of bottoming cycles in IC engines to recover waste heat energies" funded by a National Project of the Spanish Government with reference TRA2013-46408-R.Galindo, J.; Ruiz Rosales, S.; Dolz Ruiz, V.; Royo Pascual, L.; Haller, R.; Nicolas, B.; Glavatskaya, Y. (2015). Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Conversion and Management. 103:519-532. https://doi.org/10.1016/j.enconman.2015.06.085S51953210

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    NoWaste: waste heat re-use for greener truck

    Full text link
    peer reviewedThe present paper summarizes the key points of the European NoWaste Project, which aims at developing Rankine cycle systems for integration into long-haul trucks with the aim to convert the waste heat of the exhaust gases into useful energy usable in mechanical or electrical form. The first part of the paper describes the ORC system architectures defined for two different truck engines: one with EGR and the other one without EGR. For both engines, different cycle configurations and working fluids are compared in terms of energy performance and technical constraints. For both ORC systems, the paper shows the final technical choices made in terms of main components: boiler, condenser, expander and pump. The second part of the paper presents preliminary experimental results carried out on demonstrators of the two ORC systems. The objectives of these tests were to check the performance announced by the components’ manufacturers. Finally, the last part of the paper compares the cost of both systems
    corecore