3,362 research outputs found

    Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide

    Full text link
    A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250 K to 310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the polarizable GCPM water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space

    Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales

    Full text link
    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density. It makes the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.Comment: 24 pages, 8 figure

    Bulk Viscosity of a Gas of Massless Pions

    Full text link
    In the hadronic phase, the dominant configuration of QCD with two flavors of massless quarks is a gas of massless pions. We calculate the bulk viscosity (zeta) using the Boltzmann equation with the kinetic theory generalized to incorporate the trace anomaly. We find that the dimensionless ratio zeta/s, s being the entropy density, is monotonic increasing below T=120 MeV, where chiral perturbation theory is applicable. This, combined with previous results, shows that zeta/s reaches its maximum near the phase transition temperature Tc, while eta/s, eta being the shear viscosity, reaches its minimum near Tc in QCD with massless quarks.Comment: 12 pages, 1 figure; the version to appear in PR

    Performance of a cryogenic system prototype for the XENON1T Detector

    Full text link
    We have developed an efficient cryogenic system with heat exchange and associated gas purification system, as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 ton of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in parallel, a heat exchange efficiency better than 96% has been measured

    Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model

    Full text link
    The conformation and the phase diagram of a membrane protein are investigated via grand canonical ensemble approach using a homopolymer model. We discuss the nature and pathway of α\alpha-helix integration into the membrane that results depending upon membrane permeability and polymer adsorptivity. For a membrane with the permeability larger than a critical value, the integration becomes the second order transition that occurs at the same temperature as that of the adsorption transition. For a nonadsorbing membrane, the integration is of the first order due to the aggregation of α\alpha-helices.Comment: RevTeX with 5 postscript figure

    Pressure-energy correlations in liquids. II. Analysis and consequences

    Get PDF
    We present an analysis and discuss consequences of the strong correlations of the configurational parts of pressure and energy in their equilibrium fluctuations at fixed volume reported for simulations of several liquids in the companion paper [arXiv:0807.0550]. The analysis concentrates specifically on the single-component Lennard-Jones system. We demonstrate that the potential may be replaced, at fixed volume, by an effective power-law, but not because only short distance encounters dominate the fluctuations. Indeed, contributions to the fluctuations are associated with the whole first peak of the RDF, as we demonstrate by an analysis of the spatially resolved covariance matrix. The reason the effective power-law works so well depends on going beyond single-pair effects and on the constraint of fixed volume. In particular, a better approximation to the potential includes a linear term, which contributes to the mean values of potential energy and virial, but not to their fluctuations. We also study the T=0 limit of the crystalline phase, where the correlation coefficient becomes very close, but not equal, to unity. We then consider four consequences of strong pressure-energy correlations: (1) analyzing experimental data for supercritical Ar we find 96% correlation; (2) we discuss the significance acquired by the correlations for viscous van der Waals liquids approaching the glass transition: For strongly correlating viscous liquids knowledge of just one of the eight frequency-dependent thermoviscoelastic response functions basically implies knowledge of them all; (3) we re-interpret aging simulations of ortho-terphenyl carried out by Mossa {\it et al.} in 2002, showing their conclusions follow from the strongly correlating property; and (4) we discuss correlations in model biomembranes.Comment: Some changes corresponding to those made in the proof of the accepted articl

    An examination of the relationship of governance structure and performance: Evidence from banking companies in Bangladesh

    Get PDF
    Corporate governance has become increasingly important in developed and developing countries just after a series of corporate scandals and failures in a number of countries. Corporate governance structure is often viewed as a means of corporate success despite prior studies reveal mixed, somewhere conflicting and ambiguous, and somewhere no relationship between governance structure and performance. This study empirically investigates the relationship between corporate governance mechanisms and financial performance of listed banking companies in Bangladesh by using two multiple regression models. The study reveals that a good number of companies do not comply with the regulatory requirements indicating remarkable shortfall in corporate governance practice. The companies are run by the professional managers having no duality and no ownership interest for which they are compensated by high remuneration to curb agency conflict. Apart from some inconsistent relationship between some corporate variables, the corporate governance mechanisms do not appear to have significant relationship with financial performances. The findings reveal an insignificant negative impact or somewhere no impact of independent directors and non-independent non-executive directors on the level of performance that strongly support the concept that the managers are essentially worthy of trust and earn returns for the owners as claimed by stewardship theory. The study provides support for the view that while much emphasis on corporate governance mechanisms is necessary to safeguard the interest of stakeholders; corporate governance on its own, as a set of codes or standards for corporate conformance, cannot make a company successful. Companies need to balance corporate governance mechanisms with performance by adopting strategic decision and risk management with the efficient utilization of the organization’s resources

    The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    Get PDF
    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197^{197}Au+197^{197}Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.Comment: Talk given by P. Russotto at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests

    Get PDF
    The shelterwood system used in Hungary has many effects on the composition and structure of the herb layer. The aim of our study was to identify the main variables that affect the occurence of herbs and seedlings in Turkey oak-sessile oak (Quercus cerris and Q. petraea) stands. The study was carried out in the BĂŒkk mountains, Hungary. 122 sampling plots were established in 50-150 year old oak forests, where we studied the species composition and structure of the understorey and overstorey. The occurence of herbs was affected by canopy closure, the heterogenity and patchiness of the stand, the slope and the east-west component of the aspect. The composition of saplings was significantly explained by the ratio of the two major oak species in the stand and the proximity of the adult plants. An important result for forest management was that sessile oaks were able to regenerate almost only where they were dominant in the overstorey
    • 

    corecore