8 research outputs found

    Pyrrole-Protected beta-Aminoalkylzinc Reagents for the Enantioselective Synthesis of Amino-Derivatives

    Get PDF
    Chiral beta-aminoalkylzinc halides were prepared starting from optically pure commercial beta-amino-alcohols. These amino-alcohols were converted to the correspondingN-pyrrolyl-protected alkyl iodides which undergo a zinc insertion in the presence of LiCl (THF, 25 degrees C, 10-90 min). Subsequent Negishi cross-coupling or acylation reactions with acid chlorides produced amino-derivatives with retention of chirality. Diastereoselective CBS-reductions of some preparedN-pyrrolyl-ketones provided 1,3-subsitutedN-pyrrolyl-alcohols with high diastereoselectivity. Additionally, a deprotection procedure involving an ozonolysis allowed the conversion of the pyrrole-ring into a formamide without loss of optical purity

    Gold amides as anticancer drugs: synthesis and activity studies

    Get PDF
    Modular gold amide chemotherapeutics: Access to modern chemotherapeutics with robust and flexible synthetic routes that are amenable to extensive customisation is a key requirement in drug synthesis and discovery. A class of chiral gold amide complexes featuring amino acid derived ligands is reported herein. They all exhibit in vitro cytotoxicity against two slow growing breast cancer cell lines with limited toxicity towards normal epithelial cells

    Growth arrest-specific protein 6 deficiency impairs liver tissue repair after acute toxic hepatitis in mice.: Gas6 deficiency impairs hepatic wound healing

    No full text
    International audienceBACKGROUND/AIMS: Resident macrophages and myofibroblasts derived from hepatic stellate cells play a key role in liver wound healing. We previously reported that these sinusoidal cells secrete the growth arrest-specific protein 6 (Gas6) and express Axl, one of its receptors. Here we address the role of Gas6 in the healing process during acute liver injury. METHODS: Toxic hepatitis was induced by a single carbon tetrachloride injection in Gas6 deficient (Gas6(-/-)) mice and liver recovery was compared with wild-type animals. RESULTS: Gas6 deficiency did not cause any change in CCl(4)-induced liver damage. At 72 h, an efficient tissue repair was observed in wild-type animals whereas in Gas6(-/-) mice, we noticed a defective wound healing accounted by reduced Kupffer cell activation revealed by a decrease in the induction of CD14, TNF-alpha, IL6 and MCP-1. Gas6-deficiency, by limiting cytokine/chemokine release, prevents hepatocyte proliferation, recruitment of circulating monocytes and accumulation of myofibroblasts in healing areas. We also report a direct chemotactic effect of Gas6 on circulating monocytes which might explain defective macrophage infiltration in liver necrotic areas of Gas6(-/-) mice. Interestingly in Gas6(-/-) mice, we observed a high and constitutive expression of Axl and an induction of the suppressor of cytokine signaling SOCS1 after CCl(4) treatment. CONCLUSIONS: The lower level of cytokines/chemokines in Gas6(-/-) mice after CCl(4) injury, is the consequence of an inhibitory signal arising from Axl receptor overexpression, leading to delayed liver repair in deficient mice

    Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy

    Get PDF
    Mae Euroepinomics-Res MaeInternational audienceObjective We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype–phenotype correlations.Methods We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed.Results We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3′ and 5′ exons. Seizures in patients with mutations in exons 4–5 were more pharmacoresponsive than in patients with mutations in exons 8–15.Conclusions SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers

    Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy

    No full text
    Objective We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. Methods We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. Results We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. Conclusions SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.</p
    corecore