450 research outputs found
Youngsters do not pay attention to conversational rules: is this so for nonhuman primates?
The potentiality to find precursors of human language in nonhuman primates is questioned because of differences related to the genetic determinism of human and nonhuman primate acoustic structures. Limiting the debate to production and acoustic plasticity might have led to underestimating parallels between human and nonhuman primates. Adult-young differences concerning vocal usage have been reported in various primate species. A key feature of language is the ability to converse, respecting turn-taking rules. Turn-taking structures some nonhuman primates' adult vocal exchanges, but the development and the cognitive relevancy of this rule have never been investigated in monkeys. Our observations of Campbell's monkeys' spontaneous vocal utterances revealed that juveniles broke the turn-taking rule more often than did experienced adults. Only adults displayed different levels of interest when hearing playbacks of vocal exchanges respecting or not the turn-taking rule. This study strengthens parallels between human conversations and nonhuman primate vocal exchanges
Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model
The influence of intrinsic channel noise on the spontaneous spiking activity
of poisoned excitable membrane patches is studied by use of a stochastic
generalization of the Hodgkin-Huxley model. Internal noise stemming from the
stochastic dynamics of individual ion channels is known to affect the
collective properties of the whole ion channel cluster. For example, there
exists an optimal size of the membrane patch for which the internal noise alone
causes a regular spontaneous generation of action potentials. In addition to
varying the size of ion channel clusters, living organisms may adapt the
densities of ion channels in order to optimally regulate the spontaneous
spiking activity. The influence of channel block on the excitability of a
membrane patch of certain size is twofold: First, a variation of ion channel
densities primarily yields a change of the conductance level. Second, a
down-regulation of working ion channels always increases the channel noise.
While the former effect dominates in the case of sodium channel block resulting
in a reduced spiking activity, the latter enhances the generation of
spontaneous action potentials in the case of a tailored potassium channel
blocking. Moreover, by blocking some portion of either potassium or sodium ion
channels, it is possible to either increase or to decrease the regularity of
the spike train.Comment: 10 pages, 3 figures, published 200
Spectroscopy of P using the one-proton knockout reaction
The structure of P was studied with a one-proton knockout reaction
at88~MeV/u from a S projectile beam at NSCL. The rays from
thedepopulation of excited states in P were detected with GRETINA,
whilethe P nuclei were identified event-by-event in the focal plane of
theS800 spectrograph. The level scheme of P was deduced up to 7.5 MeV
using coincidences. The observed levels were attributed to
protonremovals from the -shell and also from the deeply-bound
orbital.The orbital angular momentum of each state was derived from the
comparisonbetween experimental and calculated shapes of individual
(-gated)parallel momentum distributions. Despite the use of different
reactions andtheir associate models, spectroscopic factors, , derived
from theS knockout reaction agree with those obtained earlier
fromS(,\nuc{3}{He}) transfer, if a reduction factor , as
deducedfrom inclusive one-nucleon removal cross sections, is applied to the
knockout transitions.In addition to the expected proton-hole configurations,
other states were observedwith individual cross sections of the order of
0.5~mb. Based on their shiftedparallel momentum distributions, their decay
modes to negative parity states,their high excitation energy (around 4.7~MeV)
and the fact that they were notobserved in the (,\nuc{3}{He}) reaction, we
propose that they may resultfrom a two-step mechanism or a nucleon-exchange
reaction with subsequent neutronevaporation. Regardless of the mechanism, that
could not yet be clarified, thesestates likely correspond to neutron core
excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers
the possibility to selectivelypopulate certain intruder configurations that are
otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
Identification of new transitions and mass assignments of levels in Pr
The previously reported levels assigned to 151,152,153Pr have recently been
called into question regarding their mass assignment. The above questioned
level assignments are clarified by measuring g-transitions tagged with A and Z
in an in-beam experiment in addition to the measurements from 252Cf spontaneous
fission (SF) and establish new spectroscopic information from to
in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from
the spontaneous fission of 252Cf by using Gammasphere and also from the
measurement of the prompt g-rays in coincidence with isotopically-identified
fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced
using 238U beams on a 9Be target at energies around the Coulomb barrier. The
g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated
spectra were combined to unambiguously assign the various transitions and
levels in 151,152,153Pr and other isotopes. New transitions and bands in
145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences
and A and Z gated g-g spectra. The transitions and levels previously assigned
to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions
previously assigned to 152Pr are now assigned to 151Pr on the basis of the
(A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new
band with 7 new transitions in 153Pr are identified from the g-g-g-g
coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are
also reported in 143-146Pr. New levels of 145,147-153Pr have been established,
reliable mass assignments of the levels in 151,152,153Pr have been reported and
new transitions have been identified in 143-146Pr showing the new avenues that
are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2)
has been obtained using the highly selective two-neutron knockout reaction.
Mirror energy differences between isobaric analogue states in these nuclei and
their mirror partners are interpreted in terms of isospin nonconserving
effects. A comparison between large scale shell-model calculations and data
provides the most compelling evidence to date that both electromagnetic and an
additional isospin nonconserving interactions for J=2 couplings, of unknown
origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter
Triplet energy differences and the low lying structure of Ga 62
Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei.
Purpose: The systematic behavior of triplet energy differences (TED) of T=1, J\u3c0=2+ states is examined. The A=62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in Ga62 and Ge62.
Methods: An in-beam \u3b3-ray spectroscopy experiment was performed to identify excited states in Ga62 using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed.
Results: Using the systematics as a guide, a candidate for the transition from the T=1, 2+ state is identified. However, previous work has identified similar states with different J\u3c0 assignments. Cross-section calculations indicate that the relevant T=1, 2+ state should be one of the states directly populated in this reaction.
Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T=1, 2+ state is required to reconcile our understanding of TED systematics
Low-lying level structure of Cu and its implications on the rp process
The low-lying energy levels of proton-rich Cu have been extracted
using in-beam -ray spectroscopy with the state-of-the-art -ray
tracking array GRETINA in conjunction with the S800 spectrograph at the
National Superconducting Cyclotron Laboratory at Michigan State University.
Excited states in Cu serve as resonances in the
Ni(p,)Cu reaction, which is a part of the rp-process in
type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a
more localized IMME mass fit is used resulting in ~keV. We derive
the first experimentally-constrained thermonuclear reaction rate for
Ni(p,)Cu. We find that, with this new rate, the
rp-process may bypass the Ni waiting point via the Ni(p,)
reaction for typical x-ray burst conditions with a branching of up to
40. We also identify additional nuclear physics uncertainties that
need to be addressed before drawing final conclusions about the rp-process
reaction flow in the Ni region.Comment: 8 pages, accepted for Phys. Rev.
- âŠ