447 research outputs found

    Youngsters do not pay attention to conversational rules: is this so for nonhuman primates?

    Get PDF
    The potentiality to find precursors of human language in nonhuman primates is questioned because of differences related to the genetic determinism of human and nonhuman primate acoustic structures. Limiting the debate to production and acoustic plasticity might have led to underestimating parallels between human and nonhuman primates. Adult-young differences concerning vocal usage have been reported in various primate species. A key feature of language is the ability to converse, respecting turn-taking rules. Turn-taking structures some nonhuman primates' adult vocal exchanges, but the development and the cognitive relevancy of this rule have never been investigated in monkeys. Our observations of Campbell's monkeys' spontaneous vocal utterances revealed that juveniles broke the turn-taking rule more often than did experienced adults. Only adults displayed different levels of interest when hearing playbacks of vocal exchanges respecting or not the turn-taking rule. This study strengthens parallels between human conversations and nonhuman primate vocal exchanges

    PDB27 A MULTIDIMENSIONAL HEALTH CARE INTERVENTION ASSESSMENT: THE CO-ORDINATED DIABETES HEALTHCARE NETWORK

    Get PDF

    Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model

    Full text link
    The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of the membrane patch for which the internal noise alone causes a regular spontaneous generation of action potentials. In addition to varying the size of ion channel clusters, living organisms may adapt the densities of ion channels in order to optimally regulate the spontaneous spiking activity. The influence of channel block on the excitability of a membrane patch of certain size is twofold: First, a variation of ion channel densities primarily yields a change of the conductance level. Second, a down-regulation of working ion channels always increases the channel noise. While the former effect dominates in the case of sodium channel block resulting in a reduced spiking activity, the latter enhances the generation of spontaneous action potentials in the case of a tailored potassium channel blocking. Moreover, by blocking some portion of either potassium or sodium ion channels, it is possible to either increase or to decrease the regularity of the spike train.Comment: 10 pages, 3 figures, published 200

    Spectroscopy of 35^{35}P using the one-proton knockout reaction

    Get PDF
    The structure of 35^{35}P was studied with a one-proton knockout reaction at88~MeV/u from a 36^{36}S projectile beam at NSCL. The γ\gamma rays from thedepopulation of excited states in 35^{35}P were detected with GRETINA, whilethe 35^{35}P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of 35^{35}P was deduced up to 7.5 MeV usingγ−γ\gamma-\gamma coincidences. The observed levels were attributed to protonremovals from the sdsd-shell and also from the deeply-bound p_1/2p\_{1/2} orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual (γ\gamma-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, C2SC^2S, derived from the36^{36}S (−1p)(-1p) knockout reaction agree with those obtained earlier from36^{36}S(dd,\nuc{3}{He}) transfer, if a reduction factor R_sR\_s, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the (dd,\nuc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review

    Identification of new transitions and mass assignments of levels in 143−153^{143-153}Pr

    Full text link
    The previously reported levels assigned to 151,152,153Pr have recently been called into question regarding their mass assignment. The above questioned level assignments are clarified by measuring g-transitions tagged with A and Z in an in-beam experiment in addition to the measurements from 252Cf spontaneous fission (SF) and establish new spectroscopic information from N=84N=84 to N=94N=94 in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from the spontaneous fission of 252Cf by using Gammasphere and also from the measurement of the prompt g-rays in coincidence with isotopically-identified fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced using 238U beams on a 9Be target at energies around the Coulomb barrier. The g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated spectra were combined to unambiguously assign the various transitions and levels in 151,152,153Pr and other isotopes. New transitions and bands in 145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences and A and Z gated g-g spectra. The transitions and levels previously assigned to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions previously assigned to 152Pr are now assigned to 151Pr on the basis of the (A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new band with 7 new transitions in 153Pr are identified from the g-g-g-g coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are also reported in 143-146Pr. New levels of 145,147-153Pr have been established, reliable mass assignments of the levels in 151,152,153Pr have been reported and new transitions have been identified in 143-146Pr showing the new avenues that are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.

    Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    Get PDF
    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter

    Triplet energy differences and the low lying structure of Ga 62

    Get PDF
    Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei. Purpose: The systematic behavior of triplet energy differences (TED) of T=1, J\u3c0=2+ states is examined. The A=62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in Ga62 and Ge62. Methods: An in-beam \u3b3-ray spectroscopy experiment was performed to identify excited states in Ga62 using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed. Results: Using the systematics as a guide, a candidate for the transition from the T=1, 2+ state is identified. However, previous work has identified similar states with different J\u3c0 assignments. Cross-section calculations indicate that the relevant T=1, 2+ state should be one of the states directly populated in this reaction. Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T=1, 2+ state is required to reconcile our understanding of TED systematics

    Low-lying level structure of 56^{56}Cu and its implications on the rp process

    Full text link
    The low-lying energy levels of proton-rich 56^{56}Cu have been extracted using in-beam Îł\gamma-ray spectroscopy with the state-of-the-art Îł\gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56^{56}Cu serve as resonances in the 55^{55}Ni(p,Îł\gamma)56^{56}Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in Q=639±82Q=639\pm82~keV. We derive the first experimentally-constrained thermonuclear reaction rate for 55^{55}Ni(p,Îł\gamma)56^{56}Cu. We find that, with this new rate, the rp-process may bypass the 56^{56}Ni waiting point via the 55^{55}Ni(p,Îł\gamma) reaction for typical x-ray burst conditions with a branching of up to ∌\sim40%\%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the 56^{56}Ni region.Comment: 8 pages, accepted for Phys. Rev.
    • 

    corecore