3,591 research outputs found

    The nature of turbulence in OMC1 at the star forming scale: observations and simulations

    Full text link
    Aim: To study turbulence in the Orion Molecular Cloud (OMC1) by comparing observed and simulated characteristics of the gas motions. Method: Using a dataset of vibrationally excited H2 emission in OMC1 containing radial velocity and brightness which covers scales from 70AU to 30000AU, we present the transversal structure functions and the scaling of the structure functions with their order. These are compared with the predictions of two-dimensional projections of simulations of supersonic hydrodynamic turbulence. Results: The structure functions of OMC1 are not well represented by power laws, but show clear deviations below 2000AU. However, using the technique of extended self-similarity, power laws are recovered at scales down to 160AU. The scaling of the higher order structure functions with order deviates from the standard scaling for supersonic turbulence. This is explained as a selection effect of preferentially observing the shocked part of the gas and the scaling can be reproduced using line-of-sight integrated velocity data from subsets of supersonic turbulence simulations. These subsets select regions of strong flow convergence and high density associated with shock structure. Deviations of the structure functions in OMC1 from power laws cannot however be reproduced in simulations and remains an outstanding issue.Comment: 12 pages, 8 figures, accepted A&A. Revised in response to referee. For higher resolution, see http://www.astro.phys.au.dk/~maikeng/sim_paper

    Interplanetary boundary layers at 1 AU

    Get PDF
    The structure and nature of discontinuities in the interplanetary magnetic field at 1 AU in the period March 18, 1971 to April 9, 1971, is determined by using high-resolution magnetic field measurements from Explorer 34. The discontinuities that were selected for this analysis occurred under a variety of interplanetary conditions at an average rate of 0.5/hr. This set does not include all discontinuities that were present, but the sample is large and it is probably representative. Both tangential and rotational discontinuities were identified, the ratio of TD's to RD's being approximately 3 to 1. Tangential discontinuities were observed every day, even among Alfvenic fluctuations. The structure of most of the boundary layers was simple and ordered, i.e., the magnetic field usually changed smoothly and monotonically from one side of the boundary layer to the other

    Magnetic and structural properties of nanocrystalline PrCo3_3

    Full text link
    The structure and magnetic properties of nanocrystalline PrCo3_3 obtained from high energy milling technique are investigated by X-ray diffraction, Curie temperature determination and magnetic properties measurements are reported. The as-milled samples have been annealed in a temperature range of 1023 K to 1273 K for 30 mn to optimize the extrinsic properties. The Curie temperature is 349\,K and coercive fields of 55\,kOe at 10\,K and 12\,kOe at 293\,K are obtained on the samples annealed at 1023\,K. A simulation of the magnetic properties in the framework of micromagnetism has been performed in order to investigate the influence of the nanoscale structure. A composite model with hard crystallites embedded in an amorphous matrix, corresponding to the as-milled material, leads to satisfying agreement with the experimental magnetization curve. [ K. Younsi, V. Russier and L. Bessais, J. Appl. Phys. {\bf 107}, 083916 (2010)]. The microscopic scale will also be considered from DFT based calculations of the electronic structure of RRCox_x compounds, where RR = (Y, Pr) and xx = 2,3 and 5.Comment: To be published in J. Phys.: Conference Series in the JEMS 2010 special issue. To be found once published at http://iopscience.iop.org/1742-659

    Observations of spatial and velocity structure in the Orion Molecular Cloud

    Full text link
    Observations are reported of H2 IR emission in the S(1) v=1-0 line at 2.121 microns in the Orion Molecular Cloud, OMC1, using the GriF instrument on the Canada-France-Hawaii Telescope. GriF is a combination of adaptive optics and Fabry-Perot interferometry, yielding a spatial resolution of 0.15" to 0.18" and a velocity discrimination as high as 1 km/s. Thanks to the high spatial and velocity resolution of the GriF data, 193 bright H2 emission regions can be identified in OMC1. The general characteristics of these features are described in terms of radial velocities, brightness and spatial displacement of maxima of velocity and brightness, the latter to yield the orientation of flows in the plane of the sky. Strong spatial correlation between velocity and bright H2 emission is found and serves to identify many features as shocks. Important results are: (i) velocities of the excited gas illustrate the presence of a zone to the south of BN-IRc2 and Peak 1, and the west of Peak 2, where there is a powerful blue-shifted outflow with an average velocity of -18 km/s. This is shown to be the NIR counterpart of an outflow identified in the radio from source I, a very young O-star. (ii) There is a band of weak velocity features (<5 km/s) in Peak 1 which may share a common origin through an explosive event, in the BN-IRc2 region, with the fast-moving fingers (or bullets) to the NW of OMC1. (iii) A proportion of the flows are likely to represent sites of low mass star formation and several regions show multiple outflows, probably indicative of multiple star formation within OMC1. The high spatial and velocity resolution of the GriF data show these and other features in more detail than has previously been possible.Comment: 27 pages, 19 figures, submitted to A&A Version 2: Several additions, including a section on protostellar candidates in OMC1, have been made based on the referee's suggestions v3: corrected typograph

    The Plasmasphere Boundary Layer

    Get PDF

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    The Excitation of Extended Red Emission: New Constraints on its Carrier From HST Observations of NGC 7023

    Get PDF
    The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE) in many dusty interstellar environments remains unidentified. Several competing models are more or less able to match the observed broad, unstructured ERE band. We now constrain the character of the ERE carrier further by determining the wavelengths of the radiation that initiates the ERE. Using the imaging capabilities of the Hubble Space Telescope, we have resolved the width of narrow ERE filaments appearing on the surfaces of externally illuminated molecular clouds in the bright reflection nebula NGC 7023 and compared them with the depth of penetration of radiation of known wavelengths into the same cloud surfaces. We identify photons with wavelengths shortward of 118 nm as the source of ERE initiation, not to be confused with ERE excitation, however. There are strong indications from the well-studied ERE in the Red Rectangle nebula and in the high-|b| Galactic cirrus that the photon flux with wavelengths shortward of 118 nm is too small to actually excite the observed ERE, even with 100% quantum efficiency. We conclude, therefore, that ERE excitation results from a two-step process. While none of the previously proposed ERE models can match these new constraints, we note that under interstellar conditions most polycyclic aromatic hydrocarbon (PAH) molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. Therefore, PAH di-cations deserve further study as potential carriers of the ERE. (abridged)Comment: Accepted for Publication in the Ap

    Probing Turbulence with Infrared Observations in OMC1

    Full text link
    A statistical analysis is presented of the turbulent velocity structure in the Orion Molecular Cloud at scales ranging from 70 AU to 30000 AU. Results are based on IR Fabry-Perot interferometric observations of shock and photon-excited H2 in the K-band S(1) v=1-0 line at 2.121micron and refer to the dynamical characteristics of warm perturbed gas. Observations establish that the Larson size-linewidth relation is obeyed to the smallest scales studied here extending the range of validity of this relationship by nearly 2 orders of magnitude. The velocity probability distribution function (PDF) is constructed showing extended exponential wings, providing evidence of intermittency, further supported by the skewness and kurtosis of the velocity distribution. Variance and kurtosis of the PDF of velocity differences are constructed as a function of lag. The variance shows an approximate power law dependence on lag, with exponent significantly lower than the Kolmogorov value, and with deviations below 2000AU which are attributed to outflows and possibly disk structures associated with low mass star formation within OMC1. The kurtosis shows strong deviation from a gaussian velocity field, providing evidence of velocity correlations at small lags. Results agree accurately with semi-empirical simulations in Eggers & Wang (1998). In addition, 170 individual H2 emitting clumps have been analysed with sizes between 500 and 2200 AU. These show considerable diversity with regard to PDFs and variance functions. Our analysis constitutes the first characterization of the turbulent velocity field at the scale of star formation and provide a dataset which models of star-forming regions should aim to reproduce.Comment: 17 pages, 11 figures, to appear in A&A, typos correcte
    • 

    corecore