36 research outputs found

    Ultra-uniform MIL-88B(Fe)/Fe3S4 hybrids engineered by partial sulfidation to boost catalysis in electro-Fenton treatment of micropollutants: Experimental and mechanistic insights

    Get PDF
    Fe-based metal-organic frameworks are promising catalysts for water treatment, although their viability is hampered by the slow regeneration of active Fe(II) sites. A facile sulfidation strategy is proposed to boost the catalytic activity of MIL-88B(Fe) in heterogeneous electro-Fenton (HEF) treatment of organic micropollutants at mild pH. The synthesized MIL-88B(Fe)/Fe3S4 hybrids possessed numerous and durable unsaturated iron sites, acting the S2- atoms as electron donors that enhanced the Fe(II) recycling. The sulfidated catalyst outperformed the MIL-88B(Fe), as evidenced by the 7-fold faster degradation of antibiotic trimethoprim by HEF and the fast destruction of micropollutants in urban wastewater. The hybrid catalyst was reused, obtaining >90% drug removal after four runs and, additionally, its inherent magnetism facilitated the post-treatment recovery. Electrochemical tests and DFT calculations provided mechanistic insights to explain the enhanced catalysis, suggesting that the accelerated Fe(III)/Fe(II) cycling and the enhanced mass transport and electron transfer accounted for the efficient trimethoprim degradation

    Secondary infection of Fasciola gigantica in buffaloes shows a similar pattern of serum cytokine secretion as in primary infection

    Get PDF
    BackgroundAs a natural host of Fasciola gigantica, buffalo is widely infected by F. gigantica. Its impact on buffalo production has caused great losses to the husbandry sector, and repeat infection is non-negligible. In buffaloes experimentally infected with F. gigantica, primary and secondary infection have yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo to F. gigantica, which contributes to the high infection rate. Determining the immunological mechanism of susceptibility will deepen the understanding of the interaction between F. gigantica and buffalo. Here, we explored the immune response of buffaloes against primary and secondary F. gigantica infection, with a focus on cytokines’ dynamics explored through serum cytokine detection.MethodsBuffaloes were assigned to three groups: group A (noninfected, n = 4), group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group B was infected via oral gavage with 250 viable F. gigantica metacercariae, and group C was infected twice with 250 metacercariae at an interval of 4 weeks. The second infection of group C was performed simultaneously with that of group B. Whole blood samples were collected pre-infection (0 weeks) and at 1–6, 10, and 12  weeks after that. The serum levels of seven cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-13, TGF-β, and IL-17) were simultaneously determined using ELISA and further analyzed.ResultsIn the present study, no significant changes in Th1-type cytokines production were detected in early infection, both in primary and secondary infections, while the Th2-type response was strongly induced. A comparison of primary and secondary infection showed no significant difference in the cytokine secretion, which may indicate that the re-infection at 4 weeks after primary infection could not induce a robust adaptive immune response. The full extent of interaction between buffalo and F. gigantica in re-infection requires further study

    Analytical Solution for Wave Diffraction by a Concentric Three-Cylinder System near a Vertical Wall

    No full text
    In this study, a semi-analytical model was developed to study wave diffraction around a concentric three-cylinder system near a wall based on linear potential theory. As a critical element, the target problem is transformed into bidirectional incident wave diffraction around two concentric structures based on the image principle and an analytical solution is obtained through eigenfunction expansion combined with a matching technique and Graf’s addition theorem. The validity of the proposed model was verified by comparing its results to known values. Parametric studies on porosity, annular spacing, incident angle, space between the structure and wall, and water depth were performed. The hydrodynamic loads and free-surface elevations in the system were calculated and compared to those reported in existing works on impermeable and permeable cylinders near a wall. The results indicate that the wave loads and run-ups on the exterior cylinder increase significantly based on the existence of the wall. However, based on the presence of an exterior porous protective structure, a significantly reduced influence of the wall on the interior cylinder can be observed. Considering the widespread use of concentric circular structures in ocean engineering, it is essential to conduct study on the hydrodynamic performance of concentric systems near walls, which can provide useful information for the design of marine structures

    Atypical assortative mating based on body size in an explosive-breeding toad from a tropical island of southern China

    No full text
    Mating patterns exhibit considerable infra- and interspecific variation. Sexual selection can lead to the occurrence of random and assortative mating in different populations of the same species. Thus, understanding variation in mating decisions is crucial to understanding variation in the direction of sexual selection. We investigated natural mating patterns in Black-spectacled toads (Duttaphrynus melanostictus), an explosive-breeding species that breeds throughout the year. We captured amplectant pairs (137) and non-amplectant males (212) during breeding seasons from November 2016 to April 2017 in tropical-island population of southern China. Our study found no significant difference in snout-vent length (SVL) between amplectant and non-amplectant males. Female and male SVL were positively correlated with each other. Small females were paired more frequently with small males, less frequently with large males, but had no preference for or against medium males. Medium females exhibited no preference. Large females showed no preference for large males, but were paired less frequently with small males. These data suggested that successful amplectant males had body sizes representative of the entire population. Both random and size-assortative mating were present simultaneously in the same population and within the same breeding season. Female choice was important in shaping the mating behavior of Black-spectacled toads, promoting genotype-frequency stabilization and body-size diversity in the population

    Effects of pressure control on droplet size distribution and flow regimes in gas-liquid cylindrical cyclone

    No full text
    Marine production platforms and subsea production systems desperately need compact and highly efficient gas-liquid separators. The gas-liquid cylindrical cyclone (GLCC), which mainly utilizes gravitational and centrifugal forces to achieve separation, can be an superior choice. Herein, a pressure control scheme is proposed that allows the GLCC to realize fast and stable gas-liquid separation. The droplet size distributions measured by a Malvern RTSizer indicated that increasing the liquid superficial velocity only increased the distribution of small droplets at the inlet. The droplet size distribution of the down sampling at a high dimensionless pressure was larger than that at a low dimensionless pressure, which can be explained by the droplet migration model. As the dimensionless pressure decreased, four flow regimes were experimentally observed: annular flow, churn flow stratified flow, falling droplets, and pure gas. Electrical resistance tomography measurement results indicated that better convergence of the bubbly filament was achieved at a higher dimensionless pressure

    Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota

    No full text
    International audienceAbstractBackgroundThe gastrointestinal tract is populated by a complex and vast microbial network, with a composition that reflects the relationships of the symbiosis, co-metabolism, and co-evolution of these microorganisms with their host. The mechanism that underlies such interactions between the genetics of the host and gut microbiota remains elusive.ResultsTo understand how genetic variation of the host shapes the gut microbiota and interacts with it to affect the metabolic phenotype of the host, we compared the abundance of microbial taxa and their functional performance between two lines of chickens (fat and lean) that had undergone long-term divergent selection for abdominal fat pad weight, which resulted in a 4.5-fold increase in the fat line compared to the lean line. Our analysis revealed that the proportions of Fusobacteria and Proteobacteria differed significantly between the two lines (8 vs. 18% and 33 vs. 24%, respectively) at the phylum level. Eight bacterial genera and 11 species were also substantially influenced by the host genotype. Differences between the two lines in the frequency of host alleles at loci that influence accumulation of abdominal fat were associated with differences in the abundance and composition of the gut microbiota. Moreover, microbial genome functional analysis showed that the gut microbiota was involved in pathways that are associated with fat metabolism such as lipid and glycan biosynthesis, as well as amino acid and energy metabolism. Interestingly, citrate cycle and peroxisome proliferator activated receptor (PPAR) signaling pathways that play important roles in lipid storage and metabolism were more prevalent in the fat line than in the lean line.ConclusionsOur study demonstrates that long-term divergent selection not only alters the composition of the gut microbiota, but also influences its functional performance by enriching its relative abundance in microbial taxa. These results support the hypothesis that the host and gut microbiota interact at the genetic level and that these interactions result in their co-evolution

    Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota

    No full text
    <div><p>The abundance of gut microbiota can be viewed as a quantitative trait, which is affected by the genetics and environment of the host. To quantify the effects of host genetics, we calculated the heritability of abundance of specific microorganisms and genetic correlations among them in the gut microbiota of two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone >50 generations of selection for high (HW) or low (LW) 56-day body weight and now differ by more than 10-fold in body weight at selection age. We identified families of <i>Paenibacillaceae</i>, <i>Streptococcaceae</i>, <i>Helicobacteraceae</i>, and <i>Burkholderiaceae</i> that had moderate heritabilities. Although there were no obvious phenotypic correlations among gut microbiota, significant genetic correlations were observed. Moreover, the effects were modified by genetic selection for body weight, which altered the quantitative genetic background of the host. Heritabilities for <i>Bacillaceae</i>, <i>Flavobacteriaceae</i>, <i>Helicobacteraceae</i>, <i>Comamonadaceae</i>, <i>Enterococcaceae</i>, and <i>Streptococcaceae</i> were moderate in LW line and little to zero in the HW line. These results suggest that loci associated with these microbiota families, while exhibiting genetic variation in LW, have been fixed in HW line. Also, long term selection for body weight has altered the genetic correlations among gut microbiota. No microbiota families had significant heritabilities in both the LW and HW lines suggesting that the presence and/or absence of a particular microbiota family either has a strong growth promoting or inhibiting effect, but not both. These results demonstrate that the quantitative genetics of the host have considerable influence on the gut microbiota.</p></div
    corecore