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Background: As a natural host of Fasciola gigantica, buffalo is widely infected 
by F. gigantica. Its impact on buffalo production has caused great losses to 
the husbandry sector, and repeat infection is non-negligible. In buffaloes 
experimentally infected with F. gigantica, primary and secondary infection have 
yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo 
to F. gigantica, which contributes to the high infection rate. Determining the 
immunological mechanism of susceptibility will deepen the understanding of 
the interaction between F. gigantica and buffalo. Here, we explored the immune 
response of buffaloes against primary and secondary F. gigantica infection, with a 
focus on cytokines’ dynamics explored through serum cytokine detection.

Methods: Buffaloes were assigned to three groups: group A (noninfected, n = 4), 
group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group 
B was infected via oral gavage with 250 viable F. gigantica metacercariae, and 
group C was infected twice with 250 metacercariae at an interval of 4 weeks. The 
second infection of group C was performed simultaneously with that of group B. 
Whole blood samples were collected pre-infection (0 weeks) and at 1–6, 10, and 
12  weeks after that. The serum levels of seven cytokines (IFN-γ, IL-4, IL-5, IL-10, 
IL-13, TGF-β, and IL-17) were simultaneously determined using ELISA and further 
analyzed.

Results: In the present study, no significant changes in Th1-type cytokines 
production were detected in early infection, both in primary and secondary 
infections, while the Th2-type response was strongly induced. A comparison of 
primary and secondary infection showed no significant difference in the cytokine 
secretion, which may indicate that the re-infection at 4 weeks after primary 
infection could not induce a robust adaptive immune response. The full extent of 
interaction between buffalo and F. gigantica in re-infection requires further study.
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1. Introduction

Fasciolosis, caused by Fasciola hepatica (in temperate zones) and 
Fasciola gigantica (in tropical zones), is one of the most widespread 
ruminant parasitic diseases and causes significant economic loss in 
the husbandry sector (1, 2). The tropical liver fluke, F. gigantica, 
affects the vitality and reproduction of infected buffaloes; given the 
high infection rate in buffaloes, this poses a serious threat to buffalo 
farming in Africa and Asia (3, 4).

Several studies have investigated Fasciola’s susceptibility and 
immunological mechanism in a primary infection (5–7). As 
F. hepatica infects cattle, its susceptible host, polarized Th2 is 
responsible for establishing the chronic phase and maintaining 
natural infection (6). Indonesian Thin Tail (ITT) sheep, as 
non-susceptible hosts, can resist infection by F. gigantica; an early Th1 
immune response may be  responsible for this (8). As susceptible 
hosts of F. gigantica, a mixed Th1/Th2 immune response was shown 
to have participated in the pathogenesis of F. gigantica infection in 
buffaloes (5, 7).

Explorations of the Fasciola secondary infection process have 
also been undertaken, indicating the consistency of host 
susceptibility to secondary and primary infection. Sheep, as a 
susceptible host of F. hepatica, were not resistant to the secondary 
infection of F. hepatica (9). However, ITT sheep were susceptible 
to the primary and secondary infection of F. hepatica, as flukes 
recovered from primary and secondary infections were similar to 
those of F. hepatica-susceptible sheep breeds (10). Nevertheless, 
susceptibility to secondary infection may vary depending on the 
time point of re-infection, as no resistance was detected in 
secondary infection of F. hepatica to its susceptible host, calves, 
7 weeks after primary infection, while significant resistance was 
detected to secondary infection in calves 12 weeks after primary 
infection during the chronic phase; indicating the importance of 
the time-point in the establishment of secondary infection (11). 
ITT sheep acquire resistance to F. gigantica both in primary and 
secondary infection (12). Previous laboratory research found that 
buffaloes were susceptible to primary and secondary infection by 
F. gigantica 4 weeks after primary infection, as the flukes recovery 
rate was similar in primary and secondary infection (means of 
21.2 and 23.5% burden, respectively) (13). Thus, it can be inferred 
that buffaloes are susceptible to secondary infection with 
F. gigantica, and that secondary infection at the fourth week 
cannot induce the robust adaptive immune response. However, 
the immunological precess behind this is unkown, and 
demonstration of this process will definitely guide the exploration 
of resistance process in other animal model, and helpful to vaccine 
development. Therefore, a secondary infection model was 
established, and the levels of the following seven serum cytokines 
were investigated in this study using enzyme-linked 
immunosorbent assay (ELISA): pro-inflammatory/Th1 [interferon 
(IFN)-γ], anti-inflammatory/Th2 (IL-4, IL-5, and IL-13), Treg 
[IL-10, transforming growth factor (TGF)-β], and Th17 (IL-17). 
Adaptive response induced by secondary infection could thus 
be  explored, which may deepen the understanding of the 
susceptibility immunological mechanism in fluke infection and 
interaction between F. gigantica and buffalo.

2. Materials and methods

2.1. Maintenance of the metacercariae

Adult live F. gigantica collected from the gall bladder of buffalo 
(Guangxi, China) were washed with 37°C pre-warmed sterile RPMI 
1640 media 3–4 times, and incubated in RPMI 1640 media supplemented 
with antibiotics (100 U/mL penicillin G, and streptomycin 0.1 mg/mL) 
and antimycotics (0.25 μg/mL amphotericin B) at 37°C for 2 h. Then the 
culture broth was centrifuged at 3,000 g for 30 min to collect the eggs. 
Eggs were incubated in dH2O for 3 weeks at room temperature protected 
from light, and miracidia were collected to infect Galba pervia. Each snail 
was infected with three miracidia through co-incubation in a sterile 
tissue culture plate for 1 h. Infected snails were then reared at 26°C for a 
further month, cercariae were adsorbed and encysted on 4 cm2 polythene 
strips, and then metacercariae was harvested and stored in dH2O at 4°C 
for later buffalo infection.

2.2. Experimental buffalo infection

This animal study was reviewed and approved by Ethics Committee 
of the College of Animal Science and Technology, Guangxi University. 
Ten buffaloes (6-month-old) of Murrah, Nili-Ravi, Mediterranean 
breeds, and their crossbred offspring with indigenous buffaloes in 
Guangxi, were randomly assigned to group A (noninfected, n = 4), group 
B (primary infection, n = 3), and group C (secondary infection, n = 3). 
They were stall-fed a balanced diet at the dairy of the Buffalo Research 
Institute, Chinese Academy of Agricultural Science, and verified to 
be free of parasitic infection through indirect ELISA based on Excretory-
Secretory Products (FgESP) and coprological examination. Buffaloes in 
group C were given a gelatin capsule containing 250 F. gigantica 
metacercariae for primary infection and were reinfected with 250 
metacercariae 4 weeks post-primary infection. Buffaloes in group B were 
infected by administration of 250 metacercariae orally at the same time 
of re-infection of group C. Blood samples were then collected to perform 
indirect ELISA in order to confirm the infection. To facilitate the 
description of group B and group C, the time-course of secondary 
infection for group C and primary infection for group B was conformably 
designated as 0 W, as seen in the following description (Figure 1).

2.3. Serum collection

Whole blood samples of group A, B, and C were collected 
simultaneously on a weekly basis from weeks 0–6, 10, and 12 post-
infection (wpi). They were incubated at 37°C for 1 h for natural 
coagulation, and then the liquid was centrifuged at 3,000 rpm for 
20 min at 4°C for supernatant collection. Subsequently, the serum 
layer was collected and stored at −80°C until use.

2.4. Determination of serum cytokines

The levels of cytokines, including IL-4, IL-5, IL-10, IL-13, IL-17, 
TGF-β, and IFN-γ, in serum were determined using ELISA (Bovine 
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cytokine ELISA kit, Jiangsu Yutong, China) and conducted according 
to the manufacturer’s instructions. Briefly, the diluted standard 
substance and buffalo serum collected were added to the wells of the 
corresponding antibody pre-coated microtiter plate. It was then 
covered with a sealing membrane and incubated at 37°C for 30 min. 
Following this, the liquid was discarded, and each well washed five 
times (5 min per wash) with 200 μL washing solution. Afterward, 
50 μL of enzyme-conjugate was added to each well, thoroughly mixed, 
covered with a sealing membrane, and incubated at 37°C for 30 min. 
Later, discard the liquid and wash five times with washing solution. 
For visualization, 50 μL of chromogenic agent A and 50 μL of 
chromogenic agent B were added to each well successively, shaken 
gently, and then incubated at 37°C in a dark place for 10 min. 
Afterward, 50 μL of stop solution was added to each well to terminate 
the reaction and the absorbance was then measured with a microplate 
reader (BIO-RAD, United States) at 450 nm (OD450).

2.5. Statistical analysis

The distribution of data was verified and subjected to following 
statistical analyses by GraphPad Prism 8. One-way ANOVA followed 
by Tukey’s test was used to evaluate differences within each group. 
Two-way analysis of ANOVA followed by Bonferroni’s multiple 
comparisons test was used to evaluate differences between the group 
B and C at the specific time courses during infection. p values were 
calculated, with p < 0.05 considered statistically significant.

3. Results

3.1. The establishment of infection

All buffaloes in group B and group C were challenged with 
F. gigantica seroconverted at ≥2 wpi by ELISA based on FgESP, thereby 
indicating the establishment of infection. The autopsy at the end of the 

experiment (16 wpi) also verified the establishment, considering the 
fluke recovery rate was 21.2% for group B and 23.5% for group C (not 
shown). The numbers of flukes recovered were B1 (48/250), B2 
(40/250), and B3 (71/250) in group B, and C1 (124/500), C2 (108/500), 
and C3 (120/500) in group C.

3.2. Secretion of Th1 type cytokine (IFN-γ)

The level of IFN-ϒ was stable in group A, and compared with 
week 0, no differences were detected. As for group B, all levels were 
decreased compared with pre-infection levels, with significant 
differences at 1, 4, and 5 wpi (p < 0.05). In group C, IFN-ϒ exhibited a 
similar trend as in group B, with 4 and 5 wpi levels significantly 
decreased (p < 0.05). Comparison of group B and group C indicated 
no differences throughout all weeks detected (Figure 2).

3.3. Secretion of Th2 type cytokines (IL-4, 
IL-5, and IL-13)

The level of IL-4 was stable in group A compared with week 0, as 
no differences were detected. However, the levels were increased for 
group B, compared with pre-infection, with significant differences at 
3, 5, 6, 10, and 12 wpi. In group C, IL-4 exhibited a similar trend as in 
group B, with levels in 3, 5, 6, 10, and 12 wpi increasing significantly 
(p < 0.05). A comparison of group B and group C indicated no 
difference in the IL-4 secretion throughout all weeks detected 
(Figure 2).

The level of IL-5 was stable in group A, and compared with week 
0, no differences were detected. Compared with group B, pre-infection 
levels increased throughout the whole period, with significant 
differences at 2, 3, 4, 5, 10, and 12 wpi (p < 0.05). In group C, IL-5 
exhibited a similar trend as in group B, with significant differences at 
1, 3, 6, 10, and 12 wpi (p < 0.05). A comparison of group B and group 
C indicated no differences throughout all weeks detected (Figure 2).

FIGURE 1

Experimental design. Noninfected buffaloes as negative control (group A); primary infected buffaloes (group B) received a single infection dose; 
secondary infected buffaloes (group C) received a primary infection and subsequent secondary infection at 4 wpi. Whole blood of groups A, B, and C 
were collected simultaneously pre-infection (week 0) and post-infection (weeks 1–6, 10, and 12).
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FIGURE 2

The effect of Fasciola gigantica on the levels of cytokine in the serum of primary and secondary experimentally infected buffaloes. The concentrations 
of seven cytokines were quantified pre-infection (week 0) and weekly after that for 8 weeks. Cytokine measurements were performed by ELISA kit and 
indicated in each panel. Bars represent the means ± SDs. Statistically significant (compared with pre-infection group) including p < 0.05 and p < 0.01 were 
indicated by asterisk (*) and (**) respectively.
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The level of IL-13 was stable in group A compared with week 0 
and no differences were detected. For group B, compared with 
pre-infection, the level of IL-13 increased at 0–4 wpi, followed by a 
decline at 5–6 wpi, and then increased at 10 and 12 wpi, among which 
significant increases were detected at 3 and 12 wpi (p < 0.05), while 
significant decreases were detected at 5 and 6 wpi (p < 0.05). IL-13 in 
group C exhibited a similar trend to that of group B, with significant 
increases at 4 and 12 wpi (p < 0.05) and significant decreases in 5 & 6 
wpi (p < 0.05). Comparison of group B and group C indicated no 
difference in IL-13 secretion throughout all weeks detected (Figure 2).

3.4. Secretion of Treg-type cytokines (IL-10 
and TGF-β)

The level of IL-10 was stable in group A compared with week 0, 
with no differences detected throughout all weeks. For group B, 
compared with pre-infection, the level of IL-10 was increased at 1 wpi 
followed by attenuation; it was extremely increased (p < 0.01) at 1 wpi 
and significantly decreased (p < 0.05) at 5 wpi. IL-10  in group C 
exhibited a similar trend to that of group B, with a significant increase 
at 1 wpi (p < 0.05) and a significant decrease at 6 wpi (p < 0.05). When 
comparing groups B and C, no difference in IL-10 secretion was 
detected throughout all weeks (Figure 2).

The level of TGF-β was stable in group A compared with week 0 
and no differences were detected throughout all weeks. For group B, 
compared with pre-infection, the level of TGF-β increased in all weeks 
detected and showed a significant difference at 2–6, 10, and 12 wpi 
(p < 0.05). In group C, TGF-β exhibited a similar trend as in group B, 
showing significant differences at 2–6, 10, and 12 wpi (p < 0.05). 
Comparing group B to group C showed no differences in TGF-β 
secretion throughout all weeks detected (Figure 2).

3.5. Secretion of Th17 type cytokine (IL-17)

The level of IL-17 was stable in group A compared with week 0, 
with no differences detected across all weeks. For group B, compared 
with pre-infection, the level of IL-17 fluctuated along with the 
prolonged infection, showing a significant decrease at 1 and 2 wpi 
(p < 0.05). In group C, IL-17 exhibited a similar trend to group B and 
showed significant decreases at 1 and 2 wpi (p < 0.05). Still, a 
comparison of group B to group C revealed no differences in TGF-β 
secretion throughout all weeks detected (Figure 2).

4. Discussion

In the present study, the dynamics of serum cytokines in primarily 
and secondarily F. gigantica-infected buffaloes were compared and 
investigated to explore the adaptive immunity of buffaloes and the 
susceptibility mechanism to F. gigantica present in buffaloes, which 
will deepen the understanding of the interaction between F. gigantica 
and buffalo. However, considering the limiting number of 
experimental animals here (n < 5), a larger scale of experimental 
animals should be explored to verify this precious process.

As a pro-inflammatory cytokine, IFN-γ functions as a host anti-
parasitic infection, which can induce granuloma formation around 

damaged tissue to prevent parasite migration and development. 
Additionally, IFN-γ can also activate classically activated 
macrophages (M1), which can produce nitric oxide (NO) to kill the 
parasite during acute infection (14). In the present study, F. gigantica 
infection seemed to attenuate the level of IFN-γ, suggesting 
downregulation of Th1-type response in F. gigantica infection; this 
is in agreement with the observations of Zhang et al. (15), and may 
allow the parasite to evade host immune defense, thereby promoting 
its survival (6). No significant differences in IFN-γ cytokines levels 
were detected between groups B and C, demonstrating that 
secondary infection at 4 wpi did not induce significant changes in 
Th1-type cytokines production. Further work on Th1-type response 
will need to be explored.

The anti-inflammatory cytokine IL-4 can enhance Th2-type cell 
differentiation, promote fibrosis, and repair the injury site. During 
F. gigantica infection, elevated IL-4 in the early phase can activate the 
antibody-dependent cell-mediated cytotoxicity pathway (ADCC), 
producing harmful substances that eliminate fluke. In late-phase 
infection, the elevated IL-4 and IL-13 activate the alternative 
macrophage pathway (M2), which can produce molecules that are 
toxic to the fluke and contribute to fibrosis and tissue repair (14). 
Increased IL-4 in the early phase (1–6 wpi) may be associated with 
ADCC contributing to fluke elimination. Increased levels of IL-4 and 
IL-13 in late-phase infection (12 wpi) were detected in serum; these 
exhibited synergy, which may be associated with M2 activation for 
damaged tissue repair (16).

Finlay et al. (17) showed that FhESP could suppress Th1 and Th17 
immune responses in the host by inducing the production of IL-5 and 
IL-33, thereby reducing the eliminating effects of the host against 
F. hepatica. The increased IL-5 shown in the present study may 
be  associated with the immunomodulation of FgESP, thereby 
facilitating fluke survival. Donnelly reported that, during F. gigantica 
infection, IL-4 and IL-13 both work to inhibit Th1-type response and 
promote Th2-type response (18). Therefore, it can be speculated that 
elevation of Th2-type cytokines in this context may suppress Th1-type 
response, reducing buffaloes’ immune defense to a certain extent. No 
significant differences in Th2-type cytokines levels were detected 
between groups B and C, demonstrating that secondary infection at 4 
wpi yields a similar Th2-type cytokine production pattern to that of 
primary infection.

IL-17 can promote the secretion of pro-inflammatory cytokine 
IL-1β and TNF-α, which subsequently can initiate and sustain an 
inflammatory response (19). Dowling reported that cathepsins, as 
well as glutathione of FhESP, could suppress inflammation-related 
responses by inhibiting IL-17 production, thus contributing to the 
survival of F. hepatica in the host (20). Decreased IL-17 at 1–2 wpi 
in this study may have been caused by fluke-derived components, 
which facilitated the establishment of infection by F. gigantica in the 
early phase. Increased IL-17 at 4–6 wpi was considered to inhibit 
infection with F. gigantica, as producing IL-17 can activate a 
Th1-type response and inhibit the Th2-type response (19). 
Furthermore, no significant differences were detected in IL-17 
secretion between groups B and C throughout the study, 
demonstrating that secondary infection at 4 wpi failed to induce 
significant changes in Th17-type cytokine production.

During F. hepatica infection, IL-10 and TGF-β participated in IL-4 
and IFN-γ production (21). IL-10 increased at 1 wpi, which 
presumably countered the migrating juvenile flukes, as IFN-ϒ was 
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suppressed. Considering the dynamic changes of Th1-type and 
Th2-type cytokines, it can be  argued that IL-10 and TGF-β may 
participate in maintaining the balance between the pro-inflammatory 
and anti-inflammatory responses in the interaction between buffalo 
and F. gigantica in different periods (22–24).

This dynamic study of F. gigantica-infected buffalo serum 
cytokines has revealed that, in the early stages of both primary and 
secondary infection, Th2/Treg dominated response was induced; 
this was manifested in increases of IL-4, IL-5, IL-10, IL-13, and 
TGF-β and reduction of IFN-γ and IL-17. A complex interaction 
between Th1/Th2/Treg/Th17 appeared to function in the following 
stages. In this assay, F. gigantica was found to downregulate Th1/
Th17 response through Th2-type responses in early-stage infection, 
thereby allowing infection establishment in the host. Throughout 
the middle and late stages of infection, different cytokines functions 
were thus able to assist F. gigantica in surviving in buffaloes in the 
long term.

The prevention of Fasciolosis requires an understanding of the 
immune response during infections. Studies have suggested that a Th1 
response shortly after fluke infection is associated with resistance to 
infection in resistant sheep, indicating that vaccine formulations 
should attempt to induce Th1 responses to enhance vaccine efficacy 
(25). Considering the vital role of Th1/Th2 in F. gigantica infection, 
understanding the Th1 and Th2 immune response can provide the 
basis for new vaccines and immune modulatory therapeutic 
development (26, 27). Here, the host reduced Th1, likely achieved by 
immune modulation of F. gigantica-derived molecules. As such, 
valuable and thorough analysis of the FgESP component that interacts 
with F. gigantica-infected buffalo serum, along with the infection 
process, especially during the early stage, will undoubtedly pave the 
way for vaccine candidate molecules and immune-modulatory 
therapeutic screening.

Here, seven cytokines were investigated, and no significant 
differences in secretion between primary and secondary infection 
were detected in all weeks tested. Furthermore, autopsies of 
buffaloes with primary and secondary infections indicated no 
significant difference in the fluke recovery rate between these 
groups (13). Combined with the dynamics of the cytokines, this 
verifies that the challenge infection could not induce resistance 
against F. gigantica in buffaloes. In line with this finding, it can 
be  inferred that the lack of Th1-type response in secondary 
infection is correlated with the susceptibility of buffalo to secondary 
infection by F. gigantica.
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