2,163 research outputs found

    Automated Determination of Stellar Parameters from Simulated Dispersed Images for DIVA

    Get PDF
    We have assessed how well stellar parameters (T_eff, logg and [Fe/H]) can be retrieved from low-resolution dispersed images to be obtained by the DIVA satellite. Although DIVA is primarily an all-sky astrometric mission, it will also obtain spectrophotometric information for about 13 million stars (operational limiting magnitude V ~ 13.5 mag). Constructional studies foresee a grating system yielding a dispersion of ~200nm/mm on the focal plane (first spectral order). For astrometric reasons there will be no cross dispersion which results in the overlapping of the first to third diffraction orders. The one-dimensional, position related intensity function is called a DISPI (DISPersed Intensity). We simulated DISPIS from synthetic spectra (...) for a limited range of metallicites i.e. our results are for [Fe/H] in the range -0.3 to 1 dex. We show that there is no need to deconvolve these low resolution signals in order to obtain basic stellar parameters. Using neural network methods and by including simulated data of DIVA's UV telescope, we can determine T_eff to an average accuracy of about 2% for DISPIS from stars with 2000 K < T_eff < 20000 K and visual magnitudes of V=13 mag (end of mission data). logg can be determined for all temperatures with an accuracy better than 0.25 dex for magnitudes brighter than V=12 mag. For low temperature stars with 2000 K < T_eff < 5000 K and for metallicities in the range -0.3 to +1 dex a determination of [Fe/H] is possible (to better than 0.2 dex) for these magnitudes. Additionally we examined the effects of extinction E(B-V) on DISPIS and found that it can be determined to better than 0.07 mag for magnitudes brighter than V=14 mag if the UV information is included.Comment: 12 pages, 8 figures, Accepted for publication in A&

    New Evolutionary Synthesis code. An application to the irregular galaxy NGC 1560

    Full text link
    We have developed a new evolutionary synthesis code, which incorporates the output from chemical evolution models. We compare results of this new code with other published codes, and we apply it to the irregular galaxy NGC 1560 using sophisticated chemical evolution models. The code makes important contributions in two areas: a) the building of synthetic populations with time-dependent star formation rates and stellar populations of different metallicities; b) the extension of the set of stellar tracks from the Geneva group by adding the AGB phases for mi/M⊙≥0.8m_i/M_\odot \geq 0.8 as well as the very low mass stars. Our code predicts spectra, broad band colors, and Lick indices by using a spectra library, which cover a more complete grid of stellar parameters. The application of the code with the chemical models to the galaxy NGC 1560 constrain the star formation age for its stellar population around 10.0 Gy.Comment: 10 pages, 15 figures, submited to A&

    Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments

    Get PDF
    During the industrial period, many regions experienced a reduction in forest cover and an expansion of agricultural areas, in particular North America, northern Eurasia, and South Asia. Here, results from the Land-Use and Climate, Identification of Robust Impacts (LUCID) and CMIP5 model intercomparison projects are compared in order to investigate how land-cover changes (LCC) in these regions have locally impacted the biophysical land surface properties, like albedo and evapotranspiration, and how this has affected seasonal mean temperature as well as its diurnal cycle. The impact of LCC is extracted from climate simulations, including all historical forcings, using a method that is shown to capture well the sign and the seasonal cycle of the impacts diagnosed from single-forcing experiments in most cases. The model comparison reveals that both the LUCID and CMIP5 models agree on the albedo-induced reduction of mean winter temperatures over midlatitudes. In contrast, there is less agreement concerning the response of the latent heat flux and, subsequently, mean temperature during summer, when evaporative cooling plays a more important role. Overall, a majority of models exhibit a local warming effect of LCC during this season, contrasting with results from the LUCID studies. A striking result is that none of the analyzed models reproduce well the changes in the diurnal cycle identified in present-day observations of the effect of deforestation. However, overall the CMIP5 models better simulate the observed summer daytime warming effect compared to the LUCID models, as well as the winter nighttime cooling effect

    Influence of Logging on Douglas Fir Beetle Populations

    Get PDF
    All species of bark beetles of economic importance prefer to attack freshly-killed host material. Logging slash, wind-throw, and fire-killed timber provide ideal breeding grounds for bark beetles. A few species, mostly in the Dendroctonus group, are able to kill living trees. When beetles in the group, raised in preferred host material, cannot find any or enough freshly-killed trees, logs, or slash to enter, they may attack living trees. In the interior of British Columbia, infestations of the Douglas fir beetle can often be traced to logging disturbance

    Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation

    Get PDF
    The extent of the Amazon rainforest is projected to drastically decrease in future decades because of land-use changes. Previous climate modelling studies have found that the biogeophysical effects of future Amazonian deforestation will likely increase surface temperatures and reduce precipitation locally. However, the magnitude of these changes and the potential existence of tipping points in the underlying relationships is still highly uncertain. Using a regional climate model at a resolution of about 50 km over the South American continent, we perform four ERA-interim-driven simulations with prescribed land cover maps corresponding to present-day vegetation, two deforestation scenarios for the twenty-first century, and a totally-deforested Amazon case. In response to projected land cover changes for 2100, we find an annual mean surface temperature increase of 0.5∘C over the Amazonian region and an annual mean decrease in rainfall of 0.17 mm/day compared to present-day conditions. These estimates reach 0.8∘C and 0.22 mm/day in the total-deforestation case. We also compare our results to those from 28 previous (regional and global) climate modelling experiments. We show that the historical development of climate models did not modify the median estimate of the Amazonian climate sensitivity to deforestation, but led to a reduction of its uncertainty. Our results suggest that the biogeophysical effects of deforestation alone are unlikely to lead to a tipping point in the evolution of the regional climate under present-day climate conditions. However, the conducted synthesis of the literature reveals that this behaviour may be model-dependent, and the greenhouse gas-induced climate forcing and biogeochemical feedbacks should also be taken into account to fully assess the future climate of this region

    Impact of early initiation versus national standard of care of antiretroviral therapy in Swaziland's public sector health system : study protocol for a stepped-wedge randomized trial

    Get PDF
    Background: There is robust clinical evidence to support offering early access to antiretroviral treatment (ART) to all HIV-positive individuals, irrespective of disease stage, to both improve patient health outcomes and reduce HIV incidence. However, as the global treatment guidelines shift to meet this evidence, it is still largely unknown if early access to ART for all (also referred to as "treatment as prevention" or " universal test and treat") is a feasible intervention in the resource-limited countries where this approach could have the biggest impact on the course of the HIV epidemics. The MaxART Early Access to ART for All (EAAA) implementation study was designed to determine the feasibility, acceptability, clinical outcomes, affordability, and scalability of offering early antiretroviral treatment to all HIV-positive individuals in Swaziland's public sector health system. Methods: This is a three-year stepped-wedge randomized design with open enrollment for all adults aged 18 years and older across 14 government-managed health facilities in Swaziland's Hhohho Region. Primary endpoints are retention and viral suppression. Secondary endpoints include ART initiation, adherence, drug resistance, tuberculosis, HIV disease progression, patient satisfaction, and cost per patient per year. Sites are grouped to transition two at a time from the control (standard of care) to intervention (EAAA) stage at each four-month step. This design will result in approximately one half of the total observation time to accrue in the intervention arm and the other half in the control arm. Our estimated enrolment number, which is supported by conservative power calculations, is 4501 patients over the course of the 36-month study period. A multidisciplinary, mixed-methods approach will be adopted to supplement the randomized controlled trial and meet the study aims. Additional study components include implementation science, social science, economic evaluation, and predictive HIV incidence modeling. Discussion: A stepped-wedge randomized design is a causally strong and robust approach to determine if providing antiretroviral treatment for all HIV-positive individuals is a feasible intervention in a resource-limited, public sector health system. We expect our study results to contribute to health policy decisions related to the HIV response in Swaziland and other countries in sub-Saharan Africa

    Evaluating and improving the Community Land Model's sensitivity to land cover

    Get PDF
    Modeling studies have shown the importance of biogeophysical effects of deforestation on local climate conditions but have also highlighted the lack of agreement across different models. Recently, remote-sensing observations have been used to assess the contrast in albedo, evapotranspiration (ET), and land surface temperature (LST) between forest and nearby open land on a global scale. These observations provide an unprecedented opportunity to evaluate the ability of land surface models to simulate the biogeophysical effects of forests. Here, we evaluate the representation of the difference of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the Community Land Model version 4.5 (CLM4.5) using various remote-sensing and in situ data sources. To extract the local sensitivity to land cover, we analyze plant functional type level output from global CLM4.5 simulations, using a model configuration that attributes a separate soil column to each plant functional type. Using the separated soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical contrast between forest and open land in terms of albedo, daily mean LST, and daily maximum LST, while the effect on daily minimum LST is not well captured by the model. Furthermore, we identify that the ET contrast between forests and open land is underestimated in CLM4.5 compared to observation-based products and even reversed in sign for some regions, even when considering uncertainties in these products. We then show that these biases can be partly alleviated by modifying several model parameters, such as the root distribution, the formulation of plant water uptake, the light limitation of photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast between forest and open land needs to be better constrained by observations to foster convergence amongst different land surface models on the biogeophysical effects of forests. Overall, this study demonstrates the potential of comparing subgrid model output to local observations to improve current land surface models' ability to simulate land cover change effects, which is a promising approach to reduce uncertainties in future assessments of land use impacts on climate

    The blue stragglers formed via mass transfer in old open clusters

    Full text link
    In this paper, we present the simulations for the primordial blue stragglers in the old open cluster M67 based on detailed modelling of the evolutionary processes. The principal aim is to discuss the contribution of mass transfer between the components of close binaries to the blue straggler population in M67. First, we followed the evolution of a binary of 1.4M⊙_\odot+0.9M⊙_\odot. The synthetic evolutionary track of the binary system revealed that a primordial blue straggler had a long lifetime in the observed blue straggler region of color-magnitude diagram. Second, a grid of models for close binary systems experiencing mass exchange were computed from 1Gyr to 6Gyr in order to account for primordial blue-straggler formation in a time sequence. Based on such a grid, Monte-Carlo simulations were applied for the old open cluster M67. Adopting appropriate orbital parameters, 4 primordial blue stragglers were predicted by our simulations. This was consistent with the observational fact that only a few blue stragglers in M67 were binaries with short orbital periods. An upper boundary of the primordial blue stragglers in the color-magnitude diagram (CMD) was defined and could be used to distinguish blue stragglers that were not formed via mass exchange. Using the grid of binary models, the orbital periods of the primordial BSs could be predicted. Compared with the observations, it is clear that the mechanism discussed in this work alone cannot fully predict the blue straggler population in M67. There must be several other processes also involved in the formation of the observed blue stragglers in M67.Comment: 11 pages, 6 figures, A&A accepte

    Evolutionary Population Synthesis for Binary Stellar Populations

    Full text link
    We present integrated colours, integrated spectral energy distributions, and absorption-line indices, for instantaneous burst solar-metallicity binary stellar populations with ages in the range 1 - 15Gyr. By comparing the results for populations with and without binary interactions we show that the inclusion of binary interactions makes the appearance of the population substantially bluer -- this is the case for each of the quantities we have considered. This effect raises the derived age and metallicity of the population. Therefore it is necessary to consider binary interactions in order to draw accurate conclusions from evolutionary population synthesis work.Comment: 6 pages, 4 figure

    Estimation of screening test (Hemoccult®) sensitivity in colorectal cancer mass screening

    Get PDF
    3 controlled cohorts of mass-screening for colorectal cancer using a biennial faecal occult blood (HemoccultII®) test on well-defined European populations have demonstrated a 14% to 18% reduction in specific mortality. We aimed to estimate the sensitivity (S) of this HemoccultII®test and and also mean sojourn time (MST) from French colorectal mass-screening programme data. 6 biennial screening rounds were performed from 1988 to 1998 in 45 603 individuals aged 45–74 years in Saône-et-Loire (Burgundy, France). The prevalent/incidence ratio was calculated in order to obtain a direct estimate of the product S.MST. The analysis of the proportional incidence and its modelling was used to derive an indirect estimate of S and MST. The product S.MST was higher for males than females and higher for left colon than either the right colon or rectum. The analysis of the proportional incidence confirmed the result for subsites but no other significant differences were found. The sensitivity was estimated at 0.57 and the MST at 2.56 years. This study confirms that the sensitivity of the Hemoccult test is relatively low and that the relatively short sojourn time is in favour of annual screening. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • …
    corecore