211 research outputs found

    Longitudinal and Transverse Zeeman Ladders in the Ising-Like Chain Antiferromagnet BaCo2V2O8

    Full text link
    We explore the spin dynamics emerging from the N\'eel phase of the chain compound antiferromagnet BaCo2V2O8. Our inelastic neutron scattering study reveals unconventional discrete spin excitations, so called Zeeman ladders, understood in terms of spinon confinement, due to the interchain attractive linear potential. These excitations consist in two interlaced series of modes, respectively with transverse and longitudinal polarization. The latter have no classical counterpart and are related to the zero-point fluctuations that weaken the ordered moment in weakly coupled quantum chains. Our analysis reveals that BaCo2V2O8, with moderate Ising anisotropy and sizable interchain interactions, remarkably fulfills the conditions necessary for the observation of these longitudinal excitations.Comment: 5 pages, 4 figures, 2 additional pages of supplemental material with 2 figures; Journal ref. added; 1 page erratum added at the end with 1 figur

    Momentum-resolved evolution of the Kondo lattice into 'hidden-order' in URu2Si2

    Full text link
    We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order' (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.Comment: Updated published version. Mansucript + Supplemental Material (8 pages, 9 figures). Submitted 16 September 201

    Anisotropic interactions opposing magnetocrystalline anisotropy in Sr3_3NiIrO6_6

    Get PDF
    We report our investigation of the electronic and magnetic excitations of Sr3_3NiIrO6_6 by resonant inelastic x-ray scattering at the Ir L3_3 edge. The intra-t2gt_{2g} electronic transitions are analyzed using an atomic model, including spin-orbit coupling and trigonal distortion of the IrO6_6 octahedron, confronted to {\it ab initio} quantum chemistry calculations. The Ir spin-orbital entanglement is quantified and its implication on the magnetic properties, in particular in inducing highly anisotropic magnetic interactions, is highlighted. These are included in the spin-wave model proposed to account for the dispersionless magnetic excitation that we observe at 90 meV. By counterbalancing the strong Ni2+^{2+} easy-plane anisotropy that manifests itself at high temperature, the anisotropy of the interactions finally leads to the remarkable easy-axis magnetism reported in this material at low temperature

    Re: ‘Protective Effect of Focal Adhesion Kinase against Skeletal Muscle Reperfusion Injury after Acute Limb Ischemia’

    Get PDF

    Sliding charge-density-wave in two-dimensional rare-earth tellurides

    Full text link
    Nonlinear transport properties are reported in the layered DyTe3_3 compound at temperature below the charge-density-wave (CDW) transition, TP=302T_P=302 K. Conductivity is increasing sharply above the threshold electric field. Under application of a rf field Shapiro steps are clearly observed. These features demonstrate for the first time CDW sliding in two-dimensional compounds.Comment: 4 pages, 4 figure

    Crystal Symmetry Lowering in Chiral Multiferroic Ba3_3TaFe3_3Si2_2O14_{14} observed by X-Ray Magnetic Scattering

    Full text link
    Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba3_3TaFe3_3Si2_2O14_{14} at the Fe L2,3L_{2,3} and oxygen KK edges. Below TNT_N (27K\approx27K) we observe the satellite reflections (0,0,τ)(0,0,\tau), (0,0,2τ)(0,0,2\tau), (0,0,3τ)(0,0,3\tau) and (0,0,13τ)(0,0,1-3\tau) where τ0.140±0.001\tau \approx 0.140 \pm 0.001. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane (c^\mathbf{\hat{c}}-axis) magnetic dipole while the (0,0,2τ)(0,0,2\tau) originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe L3L_3 edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase

    Magnetic properties of the honeycomb oxide Na2_2Co2_2TeO6_6

    Full text link
    We have studied the magnetic properties of Na2_2Co2_2TeO6_6, which features a honeycomb lattice of magnetic Co2+^{2+} ions, through macroscopic characterization and neutron diffraction on a powder sample. We have shown that this material orders in a zig-zag antiferromagnetic structure. In addition to allowing a linear magnetoelectric coupling, this magnetic arrangement displays very peculiar spatial magnetic correlations, larger in the honeycomb planes than between the planes, which do not evolve with the temperature. We have investigated this behavior by Monte Carlo calculations using the J1J_1-J2J_2-J3J_3 model on a honeycomb lattice with a small interplane interaction. Our model reproduces the experimental neutron structure factor, although its absence of temperature evolution must be due to additional ingredients, such as chemical disorder or quantum fluctuations enhanced by the proximity to a phase boundary.Comment: 9 pages, 13 figure

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Convergence of multi-dimensional quantized SDESDE's

    Get PDF
    We quantize a multidimensional SDESDE (in the Stratonovich sense) by solving the related system of ODEODE's in which the dd-dimensional Brownian motion has been replaced by the components of functional stationary quantizers. We make a connection with rough path theory to show that the solutions of the quantized solutions of the ODEODE converge toward the solution of the SDESDE. On our way to this result we provide convergence rates of optimal quantizations toward the Brownian motion for 1q\frac 1q-H\" older distance, q>2q>2, in Lp()L^p(\P).Comment: 43 page

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations
    corecore